NanomaterialsPub Date : 2025-03-12DOI: 10.3390/nano15060436
Lina Zhong, Chang Sun, Xiaomin Zhao, Qinghua Zhao
{"title":"Dual Roles of Carbon Quantum Dots from Green Carbon Sources: A Fluorescence Sensor for Fe<sup>3+</sup> Ions, UV and High-Energy Blue Light Screening.","authors":"Lina Zhong, Chang Sun, Xiaomin Zhao, Qinghua Zhao","doi":"10.3390/nano15060436","DOIUrl":"10.3390/nano15060436","url":null,"abstract":"<p><p>It is of great significance to develop carbon quantum dots (CQDs) using green carbon sources, which are cheap, non-toxic and harmless, and further expand their application scopes, e.g., fluorescence sensors, blue light screening. In this study, we have prepared Peperomia tetraphylla-based carbon quantum dots (PT-CQDs) with strong water solubility, good salt resistance, specific quenching reactions and excellent optical properties via a simple one-step hydrothermal method. In one application, PT-CQDs are utilized as a fluorescence sensor due to their high selectivity and sensitivity to ferric ions (Fe<sup>3+</sup>). The limit of detection (LOD) was 2.7 μmol·L<sup>-1</sup>. On the other hand, PT-CQDs/polyvinyl alcohol (PVA) films with excellent ultraviolet- (UV) and high-energy blue light (HEBL)-blocking properties were obtained. The obtained films exhibited a high blue light weight blocking rate of 100% in UV and 80% in HEBL. The concentrations of the composites could also be controlled to achieve the desired light-blocking rate. In addition, the composites were able to absorb blue light and convert it to other forms of light. These properties suggest their potential applications in the development of advanced blue light screening and fluorescence sensors.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945768/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilizing Nanomaterials in Microfluidic Devices for Disease Detection and Treatment.","authors":"Zhibiao Tian, Yatian Fu, Zhiyong Dang, Tao Guo, Wenjuan Li, Jing Zhang","doi":"10.3390/nano15060434","DOIUrl":"10.3390/nano15060434","url":null,"abstract":"<p><p>Microfluidic technology has gained widespread application in the field of biomedical research due to its exceptional sensitivity and high specificity. Particularly when combined with nanomaterials, the synergy between the two has significantly advanced fields such as precision medicine, drug delivery, disease detection, and treatment. This article aims to provide an overview of the latest research achievements of microfluidic nanomaterials in disease detection and treatment. It delves into the applications of microfluidic nanomaterials in detecting blood parameters, cardiovascular disease markers, neurological disease markers, and tumor markers. Special emphasis is placed on their roles in disease treatment, including models such as blood vessels, the blood-brain barrier, lung chips, and tumors. The development of microfluidic nanomaterials in emerging medical technologies, particularly in skin interactive devices and medical imaging, is also introduced. Additionally, the challenges and future prospects of microfluidic nanomaterials in current clinical applications are discussed. In summary, microfluidic nanomaterials play an indispensable role in disease detection and treatment. With the continuous advancement of technology, their applications in the medical field will become even more profound and extensive.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2025-03-11DOI: 10.3390/nano15060426
Xiangyu Wang, Umer Hayat, Xing Chen
{"title":"Applications of Nanomaterials in Environmental Monitoring and Water Treatment.","authors":"Xiangyu Wang, Umer Hayat, Xing Chen","doi":"10.3390/nano15060426","DOIUrl":"10.3390/nano15060426","url":null,"abstract":"<p><p>In 2022, 2 [...].</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2025-03-11DOI: 10.3390/nano15060429
Dehua Ma, Jiawei Wang, Haifeng Wang, Guibao Qian, Xingjie Zhou, Zhengqing Pei, Kexin Zheng, Qian Wang, Ju Lu
{"title":"Mg<sup>2+</sup> and Cr<sup>3+</sup> Co-Doped LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> Derived from Ni/Mn Bimetal Oxide as High-Performance Cathode for Lithium-Ion Batteries.","authors":"Dehua Ma, Jiawei Wang, Haifeng Wang, Guibao Qian, Xingjie Zhou, Zhengqing Pei, Kexin Zheng, Qian Wang, Ju Lu","doi":"10.3390/nano15060429","DOIUrl":"10.3390/nano15060429","url":null,"abstract":"<p><p>In this study, pure and Mg<sup>2+</sup>/Cr<sup>3+</sup> co-doped Ni/Mn bimetallic oxides were used as precursors to synthesize pristine and doped LNMO samples. The LNMO samples exhibited the same crystal structure as the precursors. XRD analysis confirmed the successful synthesis of LNMO cathode materials using Ni/Mn bimetallic oxides as precursors. FTIR and Raman spectroscopy reveal that Mg<sup>2+</sup>/Cr<sup>3+</sup> co-doping promotes the formation of the Fd3m disordered phase, effectively reducing electrochemical polarization and charge transfer resistance. Furthermore, co-doping significantly lowers the Mn<sup>3+</sup> content on the LNMO surface, thereby mitigating Mn<sup>3+</sup> dissolution. Significantly, Mg<sup>2+</sup>/Cr<sup>3+</sup> co-doping induces the emergence of high-surface-energy {100} crystal facets in LNMO grains, which promote lithium-ion transport and, finally, enhance rate capability and cycling performance. Electrochemical analysis indicates that the initial discharge capacities of LNMO-0, LNMO-0.005, LNMO-0.010, and LNMO-0.015 were 126.4, 125.3, 145.3, and 138.2 mAh·g<sup>-1</sup>, respectively, with capacity retention rates of 82.45%, 82.93%, 83.32%, and 82.08% after 100 cycles. Furthermore, the impedance of LNMO-0.010 prior to cycling was 97.38 Ω, representing a 14.35% reduction compared to the pristine sample. After 100 cycles, its impedance was only 58.61% of that of the pristine sample, highlighting its superior rate capability and cycling stability. As far as we know, studies on the synthesis of LNMO cathode materials via the design of Ni/Mn bimetallic oxides remain limited. Accordingly, this work provides an innovative approach for the preparation and modification of LNMO cathode materials. The investigation of Ni/Mn bimetallic oxides as precursors, combined with co-doping by Mg<sup>2+</sup> and Cr<sup>3+</sup>, for the synthesis of high-performance LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) aims to provide insights into improving rate capability, cycling stability, reducing impedance, and enhancing capacity retention.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143729933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2025-03-11DOI: 10.3390/nano15060431
Yan Tian, Hao Liu, Jing Li, Baodan Liu, Fei Liu
{"title":"Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials.","authors":"Yan Tian, Hao Liu, Jing Li, Baodan Liu, Fei Liu","doi":"10.3390/nano15060431","DOIUrl":"10.3390/nano15060431","url":null,"abstract":"<p><p>With the rapid development of high-speed imaging, aerospace, and telecommunications, high-performance photodetectors across a broadband spectrum are urgently demanded. Due to abundant surface configurations and exceptional electronic properties, two-dimensional (2D) materials are considered as ideal candidates for broadband photodetection applications. However, broadband photodetectors with both high responsivity and fast response time remain a challenging issue for all the researchers. This review paper is organized as follows. Introduction introduces the fundamental properties and broadband photodetection performances of transition metal dichalcogenides (TMDCs), perovskites, topological insulators, graphene, and black phosphorus (BP). This section provides an in-depth analysis of their unique optoelectronic properties and probes the intrinsic physical mechanism of broadband detection. In Two-Dimensional Material-Based Broadband Photodetectors, some innovative strategies are given to expand the detection wavelength range of 2D material-based photodetectors and enhance their overall performances. Among them, chemical doping, defect engineering, constructing heterostructures, and strain engineering methods are found to be more effective for improving their photodetection performances. The last section addresses the challenges and future prospects of 2D material-based broadband photodetectors. Furthermore, to meet the practical requirements for very large-scale integration (VLSI) applications, their work reliability, production cost and compatibility with planar technology should be paid much attention.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrathin Gold Nanowires.","authors":"Shuo Liu, Chunmeng Liu, Ye Wang, Jiaqi Zhang, Shaobo Cheng, Chongxin Shan","doi":"10.3390/nano15060428","DOIUrl":"10.3390/nano15060428","url":null,"abstract":"<p><p>Nanowires (NWs), particularly Au NWs, have garnered significant attention for their exceptional properties and applications as nanoscale interconnects in micro-nano electronics. Nevertheless, the stable structure of sub-2nm Au NWs continues to be ambiguous due to the significant challenges in both the fabrication processes and direct atomic-scale structural characterization. This study employs in situ transmission electron microscopy (TEM) techniques combined with the Perdew-Burke-Ernzerhof (PBE) functional within density functional theory (DFT) to systematically investigate the intrinsic relationship between the atomic structure and stability of oriented Au NWs. Our results indicate that the structural stability of Au NWs is influenced by both their structural symmetry and the proportion of (111) surfaces. Additionally, the Young's modulus of Au NWs is related to their cross-sectional symmetry, with an inverse correlation observed when the equivalent radius is below 6 Å. Finally, the number of conductive channels in Au NWs increases with cross-sectional size, with higher symmetry exhibiting more conducting channels. The experimental results offer significant insights into the key determinants influencing the structural integrity of ultrathin gold nanowires, which serves as a crucial basis for their implementation in next-generation nanoscale device technologies.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2025-03-11DOI: 10.3390/nano15060427
Yongbo Fan, Lixin Song, Weijia Wang, Huiqing Fan
{"title":"Nano-Micro Structure of Metal Oxide Semiconductors for Triethylamine Sensors: ZnO and In<sub>2</sub>O<sub>3</sub>.","authors":"Yongbo Fan, Lixin Song, Weijia Wang, Huiqing Fan","doi":"10.3390/nano15060427","DOIUrl":"10.3390/nano15060427","url":null,"abstract":"<p><p>Toxic and harmful gases, particularly volatile organic compounds like triethylamine, pose significant risks to human health and the environment. As a result, metal oxide semiconductor (MOS) sensors have been widely utilized in various fields, including medical diagnostics, environmental monitoring, food processing, and chemical production. Extensive research has been conducted worldwide to enhance the gas-sensing performance of MOS materials. However, traditional MOS materials suffer from limitations such as a small specific surface area and a low density of active sites, leading to poor gas sensing properties-characterized by low sensitivity and selectivity, high detection limits and operating temperatures, as well as long response and recovery times. To address these challenges in triethylamine detection, this paper reviews the synthesis of nano-microspheres, porous micro-octahedra, and hollow prism-like nanoflowers via chemical solution methods. The triethylamine sensing performance of MOS materials, such as ZnO and In<sub>2</sub>O<sub>3</sub>, can be significantly enhanced through nano-morphology control, electronic band engineering, and noble metal loading. Additionally, strategies, including elemental doping, oxygen vacancy modulation, and structural morphology optimization, have been employed to achieve ultra-high sensitivity in triethylamine detection. This review further explores the underlying mechanisms responsible for the improved gas sensitivity. Finally, perspectives on future research directions in triethylamine gas sensing are provided.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2025-03-11DOI: 10.3390/nano15060432
Xin Zhong, Xiaojun Liu, Meihuan Ji, Fubin Jiang
{"title":"Densely Stacked CoCu-MOFs Coated with CuAl/LDH Enhance Sulfamethoxazole Degradation in PMS-Activated Systems.","authors":"Xin Zhong, Xiaojun Liu, Meihuan Ji, Fubin Jiang","doi":"10.3390/nano15060432","DOIUrl":"10.3390/nano15060432","url":null,"abstract":"<p><p>As the most promising techniques for refractory antibiotic degradation in wastewater management, sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted considerable attention. However, systematic studies on potassium peroxymonosulfate (PMS) activation by MOF-derived metal oxides coated with LDH materials are still lacking. In this work, a series of catalysts consisting of CoCu-MOFs coated with CuAl/LDH were synthesized for PMS activation in the removal of sulfamethoxazole (SMX). As expected, CoCu-MOFs coated with CuAl/LDH catalyst showed high SMX removal and stability in PMS activation. In the CoCu/LDH/PMS reaction, the SMX removal was nearly 100% after 60 min, and the mineralization reached 53.7%. The catalyst showed excellent catalytic stability and low metal leaching concentrations (Co: 0.013 mg/L, Cu: 0.313 mg/L), as detected by ICP. Sulfate radicals and hydroxyl radicals were identified as the dominant reactive species in the CoCu/LDH/PMS system. Moreover, the presence of <sup>1</sup>O<sub>2</sub> in the process revealed the coupling of non-radical and radical processes. The XPS results showed that the layered structure of CoCu/LDH promoted the recycling of metal ions (high and low valence), which facilitated heterogeneous PMS activation. The effects of different reaction conditions and reuse cycles were also determined. The SMX oxidation pathways were proposed based on the intermediates identified by LC/MS. The high activity and stability of CoCu/LDH provide a new mechanistic understanding of PMS activation catalysts and their potential utilization in practical wastewater treatment.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2025-03-11DOI: 10.3390/nano15060430
Jan Reimers, Martin Mikulics, Marta Lipinska-Chwalek, Berit Zeller-Plumhoff, Lidia Kibkalo, Maximilian Kruth, Regine Willumeit-Römer, Joachim Mayer, Hilde Helen Hardtdegen
{"title":"Towards Correlative Raman Spectroscopy-STEM Investigations Performed on a Magnesium-Silver Alloy FIB Lamella.","authors":"Jan Reimers, Martin Mikulics, Marta Lipinska-Chwalek, Berit Zeller-Plumhoff, Lidia Kibkalo, Maximilian Kruth, Regine Willumeit-Römer, Joachim Mayer, Hilde Helen Hardtdegen","doi":"10.3390/nano15060430","DOIUrl":"10.3390/nano15060430","url":null,"abstract":"<p><p>In this study, a lamella prepared using focused ion beam (FIB) milling from a magnesium-silver alloy wire was investigated. The wire, intended for biomedical applications, was initially degraded in simulated body fluid (SBF) under physiological conditions. Raman spectroscopy was performed across the entire FIB specimen and the results were correlated with findings from scanning transmission electron microscopy (STEM). Our micro-Raman analysis identified chemical compounds at distinct regions within the specimen. Dominant Raman modes at ~1350 cm<sup>-1</sup> and ~1590 cm<sup>-1</sup>, likely derived from elemental carbon from the FIB protection layer, were observed. Additionally, modes indicative of the alloy's interaction with SBF, attributable to the constituents of SBF, were detected. Notably, Raman modes at ~3650 cm<sup>-1</sup> corresponding to the OH stretching mode were identified in the targeted areas of the lamella, highlighting the chemical interaction between magnesium (Mg) and the SBF. The micro-Raman mapping images showed localized Mg(OH)<sub>2</sub> distributions, which correlated strongly with the STEM analyses. This study underscores the effectiveness of correlating Raman spectroscopy, revealing chemical changes and STEM, capturing the corresponding microstructural changes. The combined approach is crucial for a deeper understanding of material degradation and reactivity in biocompatible alloys under physiological conditions and advances the characterization of biocompatible materials in physiological environments.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2025-03-10DOI: 10.3390/nano15060423
Yong-Gang Sun, Yu Hu, Li Dong, Ting-Ting Zhou, Xiang-Yu Qian, Fa-Jia Zhang, Jia-Qi Shen, Zhi-Yang Shan, Li-Ping Yang, Xi-Jie Lin
{"title":"Unlocking the Potential of Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>-C Hollow Microspheres in Sodium-Ion Batteries via Template-Free Synthesis.","authors":"Yong-Gang Sun, Yu Hu, Li Dong, Ting-Ting Zhou, Xiang-Yu Qian, Fa-Jia Zhang, Jia-Qi Shen, Zhi-Yang Shan, Li-Ping Yang, Xi-Jie Lin","doi":"10.3390/nano15060423","DOIUrl":"10.3390/nano15060423","url":null,"abstract":"<p><p>Layered sodium trititanate (Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>) is a promising anode material for sodium-ion batteries due to its suitable charge/discharge plateaus, cost-effectiveness, and eco-friendliness. However, its slow Na<sup>+</sup> diffusion kinetics, poor electron conductivity, and instability during cycling pose significant challenges for practical applications. To address these issues, we developed a template-free method to synthesize Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>-C hollow microspheres. The synthesis began with polymerization-induced colloid aggregation to form a TiO<sub>2</sub>-urea-formaldehyde (TiO<sub>2</sub>-UF) precursor, which was then subjected to heat treatment to induce inward crystallization, creating hollow cavities within the microspheres. The hollow structure, combined with a conductive carbon matrix, significantly enhanced the cycling performance and rate capability of the material. When used as an anode, the Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>-C hollow microspheres exhibited a high reversible capacity of 188 mAh g<sup>-</sup><sup>1</sup> at 0.2C and retained 169 mAh g<sup>-</sup><sup>1</sup> after 500 cycles. Additionally, the material demonstrated excellent rate performance with capacities of 157, 133, 105, 77, 62, and 45 mAh g<sup>-</sup><sup>1</sup> at current densities of 0.5, 1, 2, 5, 10, and 20C, respectively. This innovative approach provides a new strategy for developing high-performance sodium-ion battery anodes and has the potential to significantly advance the field of energy storage.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}