Julia E Poletaeva, Boris P Chelobanov, Anna V Epanchintseva, Anastasiya V Tupitsyna, Ilya S Dovydenko, Elena I Ryabchikova
{"title":"Internalization of Lipid-Coated Gold Nanocomposites and Gold Nanoparticles by Mouse SC-1 Fibroblasts in Monolayer and Spheroids.","authors":"Julia E Poletaeva, Boris P Chelobanov, Anna V Epanchintseva, Anastasiya V Tupitsyna, Ilya S Dovydenko, Elena I Ryabchikova","doi":"10.3390/nano15181419","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we have established that unique composite particles (MLNCs) carried siRNA on a gold core and were covered with a lipid shell. MLNCs successfully delivered siRNa into cells in the presence of serum. We developed the photofixation method, allowing us to obtain MLNCs bearing a fixed protein corona. To understand the mechanisms of the influence that the protein corona has on the interaction of particles with cells, it is necessary to study the interaction of \"naked\" MLNCs with cells. This study aimed to examine the pathways of MLNC penetration into SC-1 fibroblasts used to confirm the efficacy of siRNA delivery. We studied fibroblasts in monolayer and spheroid form, and citrate AuNPs were used as a comparison particle. The same particles served as cores for MLNCs. The obtained results showed active penetration by clathrin-mediated endocytosis of \"naked\" MLNCs into SC-1 fibroblasts, regardless of the form of cultivation. AuNPs penetrated into monolayer fibroblasts by macropinocytosis and into spheroids by clathrin-mediated endocytosis. The penetration depth into the spheroids was about 40 μm for both types of particles (spheroid size was 350-400 μm). The particles migrated through the intercellular spaces, passing through intercellular contacts.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181419","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we have established that unique composite particles (MLNCs) carried siRNA on a gold core and were covered with a lipid shell. MLNCs successfully delivered siRNa into cells in the presence of serum. We developed the photofixation method, allowing us to obtain MLNCs bearing a fixed protein corona. To understand the mechanisms of the influence that the protein corona has on the interaction of particles with cells, it is necessary to study the interaction of "naked" MLNCs with cells. This study aimed to examine the pathways of MLNC penetration into SC-1 fibroblasts used to confirm the efficacy of siRNA delivery. We studied fibroblasts in monolayer and spheroid form, and citrate AuNPs were used as a comparison particle. The same particles served as cores for MLNCs. The obtained results showed active penetration by clathrin-mediated endocytosis of "naked" MLNCs into SC-1 fibroblasts, regardless of the form of cultivation. AuNPs penetrated into monolayer fibroblasts by macropinocytosis and into spheroids by clathrin-mediated endocytosis. The penetration depth into the spheroids was about 40 μm for both types of particles (spheroid size was 350-400 μm). The particles migrated through the intercellular spaces, passing through intercellular contacts.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.