超疏水涂层对水下撞击射流湍流和旋涡结构的影响。

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-09-12 DOI:10.3390/nano15181407
Delfino Cornejo-Monroy, Betania Sánchez-Santamaria, David Luviano-Cruz, Manuel Alejandro Lira-Martínez, J C García, José Omar Dávalos
{"title":"超疏水涂层对水下撞击射流湍流和旋涡结构的影响。","authors":"Delfino Cornejo-Monroy, Betania Sánchez-Santamaria, David Luviano-Cruz, Manuel Alejandro Lira-Martínez, J C García, José Omar Dávalos","doi":"10.3390/nano15181407","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of liquid jets on solid surfaces is a critical hydrodynamic mechanism in applications like cooling and cleaning. Surface properties, particularly superhydrophobicity, can significantly alter flow development throughout the impingement process. This work uses particle image velocimetry (PIV) to investigate a submerged water jet impinging on smooth and superhydrophobic surfaces. The jet, with a 4 mm diameter (D), was operated at a Reynolds number of 4500 and a nozzle-to-surface distance of 10D. Results demonstrate that the superhydrophobic surface (SHS) modifies the flow behavior significantly. Compared to the smooth surface, the peak jet velocity on the SHS increased by 26% in the axial direction and 19% in the radial direction. Furthermore, turbulent kinetic energy (TKE) at the impingement point was substantially higher on the coated surface. These findings are attributed to reduced wall friction on the superhydrophobic surface, which enhances momentum retention and alters turbulent production.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472951/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of Superhydrophobic Coatings on Turbulence and Vortical Structures in a Submerged Impinging Jet.\",\"authors\":\"Delfino Cornejo-Monroy, Betania Sánchez-Santamaria, David Luviano-Cruz, Manuel Alejandro Lira-Martínez, J C García, José Omar Dávalos\",\"doi\":\"10.3390/nano15181407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The impact of liquid jets on solid surfaces is a critical hydrodynamic mechanism in applications like cooling and cleaning. Surface properties, particularly superhydrophobicity, can significantly alter flow development throughout the impingement process. This work uses particle image velocimetry (PIV) to investigate a submerged water jet impinging on smooth and superhydrophobic surfaces. The jet, with a 4 mm diameter (D), was operated at a Reynolds number of 4500 and a nozzle-to-surface distance of 10D. Results demonstrate that the superhydrophobic surface (SHS) modifies the flow behavior significantly. Compared to the smooth surface, the peak jet velocity on the SHS increased by 26% in the axial direction and 19% in the radial direction. Furthermore, turbulent kinetic energy (TKE) at the impingement point was substantially higher on the coated surface. These findings are attributed to reduced wall friction on the superhydrophobic surface, which enhances momentum retention and alters turbulent production.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472951/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15181407\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181407","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在冷却和清洁等应用中,液体射流对固体表面的影响是一种关键的流体动力学机制。表面特性,特别是超疏水性,可以显著改变整个冲击过程中的流动发展。本研究使用粒子图像测速技术(PIV)研究了水下水射流撞击光滑和超疏水表面的现象。射流直径为4mm,雷诺数为4500,喷嘴到表面的距离为10D。结果表明,超疏水表面(SHS)显著改变了材料的流动特性。与光滑表面相比,SHS表面的峰值射流速度在轴向和径向分别提高了26%和19%。此外,涂层表面撞击点处的湍流动能(TKE)明显更高。这些发现归因于超疏水表面壁面摩擦的减少,这增强了动量保持并改变了湍流的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Superhydrophobic Coatings on Turbulence and Vortical Structures in a Submerged Impinging Jet.

The impact of liquid jets on solid surfaces is a critical hydrodynamic mechanism in applications like cooling and cleaning. Surface properties, particularly superhydrophobicity, can significantly alter flow development throughout the impingement process. This work uses particle image velocimetry (PIV) to investigate a submerged water jet impinging on smooth and superhydrophobic surfaces. The jet, with a 4 mm diameter (D), was operated at a Reynolds number of 4500 and a nozzle-to-surface distance of 10D. Results demonstrate that the superhydrophobic surface (SHS) modifies the flow behavior significantly. Compared to the smooth surface, the peak jet velocity on the SHS increased by 26% in the axial direction and 19% in the radial direction. Furthermore, turbulent kinetic energy (TKE) at the impingement point was substantially higher on the coated surface. These findings are attributed to reduced wall friction on the superhydrophobic surface, which enhances momentum retention and alters turbulent production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信