Karan Mediratta, Marena D Diab, Peter Han, Hailey Hu, Lisheng Wang
{"title":"Emerging Strategies for Cargo Loading and Engineering of Extracellular Vesicles for Breast Cancer Treatment.","authors":"Karan Mediratta, Marena D Diab, Peter Han, Hailey Hu, Lisheng Wang","doi":"10.3390/nano15181418","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer has now surpassed lung cancer as the leading cause of cancer-related deaths among women worldwide. Given the urgent need for more effective treatment, extracellular vesicles (EVs) have gained attention as versatile and promising drug delivery systems. Derived from a variety of cell types, EVs can be loaded with therapeutic cargo or engineered to present specific surface ligands and receptors. These EV modifications enable them to overcome many limitations associated with conventional therapies. In this review, we highlight current methodologies for loading small molecule drugs, RNA-based therapeutics, and proteins into EVs through both pre-isolation (endogenous) and post-isolation (exogenous) methods. We further discuss recent advances in EV surface engineering strategies aimed at improving tumor-specific targeting and immunotherapeutic efficacy in breast cancer.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181418","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer has now surpassed lung cancer as the leading cause of cancer-related deaths among women worldwide. Given the urgent need for more effective treatment, extracellular vesicles (EVs) have gained attention as versatile and promising drug delivery systems. Derived from a variety of cell types, EVs can be loaded with therapeutic cargo or engineered to present specific surface ligands and receptors. These EV modifications enable them to overcome many limitations associated with conventional therapies. In this review, we highlight current methodologies for loading small molecule drugs, RNA-based therapeutics, and proteins into EVs through both pre-isolation (endogenous) and post-isolation (exogenous) methods. We further discuss recent advances in EV surface engineering strategies aimed at improving tumor-specific targeting and immunotherapeutic efficacy in breast cancer.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.