Joanna Odrobińska-Baliś, Magdalena Procner, Kinga Krużel, Magdalena Regulska, Monika Leśkiewicz, Dorota Duraczyńska, Szczepan Zapotoczny, Władysław Lasoń, Krzysztof Szczepanowicz
{"title":"Chitosan-Based Nanocapsules as a Delivery System of Hydrophobic Carnosic Acid, A Model Neuroprotective Drug.","authors":"Joanna Odrobińska-Baliś, Magdalena Procner, Kinga Krużel, Magdalena Regulska, Monika Leśkiewicz, Dorota Duraczyńska, Szczepan Zapotoczny, Władysław Lasoń, Krzysztof Szczepanowicz","doi":"10.2147/NSA.S490372","DOIUrl":"10.2147/NSA.S490372","url":null,"abstract":"<p><strong>Introduction: </strong>Since the population of Europe is rapidly aging, the number of cases of neurodegenerative diseases sharply increases. One of the most significant limitations of current neurodegenerative disease treatment is the inefficient delivery of neuroprotective drugs to the affected part of the brain. One of the promising methods to improve the pharmacokinetic and pharmacodynamic properties of antioxidants is their encapsulation in nanocarriers.</p><p><strong>Materials and methods: </strong>Encapsulation of carnosic acid into a chitosan-based nanoparticle system with ultrasound-assisted emulsification process was developed. The physicochemical properties (size, stability, concentration of nanoparticles) of obtained nanocapsules were analyzed. Also, the cytotoxicity and neuroprotective effect in SH-SY5Y cells exposed to toxic concentration of H<sub>2</sub>O<sub>2</sub> of the obtained nanoparticles were evaluated in vitro.</p><p><strong>Results and discussion: </strong>The capsules with diameters between 90 and 150 nm and long-term stability were obtained. Cytotoxicity tests of empty capsules indicate that observed toxic effects were concentration dependent and lower concentrations (dilution above 500×) can be considered as safe for tested cells. Our study also indicates that encapsulation of carnosic acid decreased the cytotoxicity of empty nanocapsules and can efficiently protect SH-SY5Y cells from factors causing cell destruction. In addition, the neuroprotective efficacy of carnosic acid loaded nanocapsules was also demonstrated in SH-SY5Y cells exposed to toxic concentration of H<sub>2</sub>O<sub>2</sub>. The designed nanoparticles appear to possess sufficient biocompatibility to deserve their further evaluation in in vivo models.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"259-271"},"PeriodicalIF":4.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Imran Khan, Gaurav Kaushik, Chaitenya Verma, Richa Vashishtha, Vinay Kumar
{"title":"Optimization of Binding Buffer Composition (Polyethylene Glycol, Sodium Chloride and pH) for Extraction of DNA from Biological Fluids Using Polyethyleneimine Functionalized Iron Oxide Nanoparticle-Based Method.","authors":"Imran Khan, Gaurav Kaushik, Chaitenya Verma, Richa Vashishtha, Vinay Kumar","doi":"10.2147/NSA.S494613","DOIUrl":"10.2147/NSA.S494613","url":null,"abstract":"<p><strong>Introduction: </strong>Efficient extraction of DNA from biological fluids is crucial for applications in molecular biology, forensic science, and clinical diagnostics. However, traditional DNA extraction methods often require costly reagents and lengthy procedures. This study aims to optimize the binding buffer composition for DNA extraction using polyethyleneimine-coated iron oxide nanoparticles (PEI-IONPs), which offer the dual benefits of magnetic separation and high DNA-binding efficiency.</p><p><strong>Methods: </strong>The effects of three key binding buffer components-polyethylene glycol (PEG-6000), sodium chloride (NaCl), and pH-on DNA adsorption efficiency were systematically evaluated. Blood samples were treated with PEI-IONPs under various conditions, and DNA concentration, yield, and purity were quantified. Nanoparticle functionalization was confirmed through characterization, and DNA quality was validated via agarose gel electrophoresis.</p><p><strong>Results: </strong>The optimized binding buffer composition consisted of a PEG-6000 concentration of 30%, NaCl concentration of 0M, and pH of 4, which yielded the highest DNA concentration (34 ± 1.2 ng/μL), yield (6.8 ± 0.2 μg), and purity (A260/A280 ratio of 1.81). These conditions significantly improved DNA recovery compared to suboptimal buffer compositions.</p><p><strong>Conclusion: </strong>The findings highlighted the critical role of binding buffer composition in maximizing DNA recovery. The use of optimized PEI-IONPs provided a rapid and efficient method for DNA extraction, supporting its potential for applications in scientific and clinical research. Future studies should explore the robustness of these optimized conditions across diverse biological fluids and extraction settings.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"247-258"},"PeriodicalIF":4.9,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marta Krychowiak-Maśnicka, Weronika Paulina Wojciechowska, Karolina Bogaj, Aleksandra Bielicka-Giełdoń, Ewa Czechowska, Magdalena Ziąbka, Magdalena Narajczyk, Anna Kawiak, Tomasz Mazur, Beata Szafranek, Aleksandra Królicka
{"title":"The Substantial Role of Cell and Nanoparticle Surface Properties in the Antibacterial Potential of Spherical Silver Nanoparticles.","authors":"Marta Krychowiak-Maśnicka, Weronika Paulina Wojciechowska, Karolina Bogaj, Aleksandra Bielicka-Giełdoń, Ewa Czechowska, Magdalena Ziąbka, Magdalena Narajczyk, Anna Kawiak, Tomasz Mazur, Beata Szafranek, Aleksandra Królicka","doi":"10.2147/NSA.S489407","DOIUrl":"10.2147/NSA.S489407","url":null,"abstract":"<p><strong>Purpose: </strong>Although it is well known that the size, shape, and surface chemistry affect the biological potential of silver nanoparticles (AgNPs), the published studies that have considered the influence of AgNP surface on antibacterial activity have not provided conclusive results. This is the first study whose objective was to determine the significance of the surface net charge of AgNPs on their antibacterial potential, attraction to bacterial cells, and cell envelope disruption, considering differences in bacterial surface properties.</p><p><strong>Methods: </strong>We evaluated five commercial AgNP colloids with identical size and shape but different surface ligands. We thoroughly characterized their physicochemical properties, including the zeta potential, hydrodynamic diameter, and polydispersity index, and determined the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), along with silver absorption into bacterial cells. Moreover, we investigated structural changes in bacteria treated with AgNPs by using a crystal violet assay and electron microscopy.</p><p><strong>Results: </strong>The zeta potential of AgNPs ranged from -47.6 to +68.5 mV, with a hydrodynamic diameter of 29-87 nm and a polydispersity index of 0.349-0.863. Bacterial susceptibility varied significantly (0.5 ≤ MIC ≤ 256 µg Ag/mL; 1 ≤ MBC ≤ 256 µg Ag/mL); we found the lowest susceptibility in bacteria with a cell wall or a polysaccharide capsule. The most active AgNPs (0.5 ≤ MIC ≤ 32 µg Ag/mL; 2 ≤ MBC ≤ 64 µg Ag/mL) had a moderate surface charge (-21.5 and +14.9 mV). The antibacterial potential was unrelated to ion dissolution or cell envelope disruption, and bacterial cells absorbed less of the most active AgNPs (1.75-7.65%).</p><p><strong>Conclusion: </strong>Contrary to previous reports, we found that a moderate surface charge is crucial for the antibacterial activity of AgNPs, and that a significant attraction of the nanoparticle to the cell surface reduces the antibacterial potential of AgNPs. These findings challenge the existing views on AgNP antibacterial mechanisms and interactions with bacterial cells.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"227-246"},"PeriodicalIF":4.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630726/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aryel H Ferreira, Fábio L N Marques, Caroline C Real, Velaphi C Thipe, Lucas F Freitas, Caroline S A Lima, Larissa Estessi de Souza, Mara S Junqueira, Daniele de Paula Faria, Gustavo H C Varca, Ademar B Lugão, Kattesh V Katti
{"title":"Green Nanotechnology Through Papain Nanoparticles: Preclinical in vitro and in vivo Evaluation of Imaging Triple-Negative Breast Tumors.","authors":"Aryel H Ferreira, Fábio L N Marques, Caroline C Real, Velaphi C Thipe, Lucas F Freitas, Caroline S A Lima, Larissa Estessi de Souza, Mara S Junqueira, Daniele de Paula Faria, Gustavo H C Varca, Ademar B Lugão, Kattesh V Katti","doi":"10.2147/NSA.S474194","DOIUrl":"https://doi.org/10.2147/NSA.S474194","url":null,"abstract":"<p><strong>Background: </strong>Recent advancements in nanomedicine and nanotechnology have expanded the scope of multifunctional nanostructures, offering innovative solutions for targeted drug delivery and diagnostic agents in oncology and nuclear medicine. Nanoparticles, particularly those derived from natural sources, hold immense potential in overcoming biological barriers to enhance therapeutic efficacy and diagnostic accuracy. Papain, a natural plant protease derived from <i>Carica papaya</i>, emerges as a promising candidate for green nanotechnology-based applications due to its diverse medicinal properties, including anticancer properties.</p><p><strong>Purpose: </strong>This study presents a novel approach in nanomedicine and oncology, exploring the potential of green nanotechnology by developing and evaluating technetium-99m radiolabeled papain nanoparticles (<sup>99m</sup>Tc-P-NPs) for imaging breast tumors. The study aimed to investigate the efficacy and specificity of these nanoparticles in breast cancer models through preclinical in vitro and in vivo assessments.</p><p><strong>Methods: </strong>Papain nanoparticles (P-NPs) were synthesized using a radiation-driven method and underwent thorough characterization, including size, surface morphology, surface charge, and cytotoxicity assessment. Subsequently, P-NPs were radiolabeled with technetium-99m (<sup>99m</sup>Tc), and in vitro and in vivo studies were conducted to evaluate cellular uptake at tumor sites, along with biodistribution, SPECT/CT imaging, autoradiography, and immunohistochemistry assays, using breast cancer models.</p><p><strong>Results: </strong>The synthesized P-NPs exhibited a size mean diameter of 9.3 ± 1.9 nm and a spherical shape. The in vitro cytotoxic activity of native papain and P-NPs showed low cytotoxicity in HUVEC, MDA-MB231, and 4T1 cells. The achieved radiochemical yield was 94.2 ± 3.1% that were sufficiently stable (≥90%) for 6 h. The tumor uptake achieved in the 4T1 model was 2.49 ± 0.32% IA/g at 2 h and 1.51 ± 0.20% IA/g at 6 h. In the spontaneous breast cancer model, 1.19 ± 0.20% IA/g at 2 h and 0.86 ± 0.31% IA/g at 6 h. SPECT/CT imaging has shown substantial tumor uptake of the new nanoradiopharmaceutical and clear tumor visualization. <sup>99m</sup>Tc-P-NPs exhibited a high affinity to tumoral cells confirmed by ex vivo autoradiography and immunohistochemistry assays.</p><p><strong>Conclusion: </strong>The findings underscore the potential of green nanotechnology-driven papain nanoparticles as promising agents for molecular imaging of breast and other tumors through SPECT/CT imaging. The results represent a substantial step forward in the application of papain nanoparticles as carriers of diagnostic and therapeutic radionuclides to deliver diagnostic/therapeutic payloads site-specifically to tumor sites for the development of a new generation of nanoradiopharmaceuticals.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"211-226"},"PeriodicalIF":4.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Velaphi C Thipe, Nya Hall, Amoolya Pandurangi, Samuel Ajayi, Prosper Emeh, Iti Gauttam, Rania Ghamgui, Fatima Hameedat, Sihem Khelil, Nhu Ky Ly, Mahmoud Salim, Anum Shahid Waleed, Prajna Hegde, Vrushali Hegde, Deepa Prakash, Ilaadevi Hegde, Kavita Katti, Alice Raphael Karikachery, Emilie Roger, Anne Landreau, Kattesh V Katti
{"title":"Nano-Ayurvedic Medicine Approaches Using <i>Ginkgo biloba</i>-Phytochemicals Functionalized Gold Nanoparticles Against Breast Cancer.","authors":"Velaphi C Thipe, Nya Hall, Amoolya Pandurangi, Samuel Ajayi, Prosper Emeh, Iti Gauttam, Rania Ghamgui, Fatima Hameedat, Sihem Khelil, Nhu Ky Ly, Mahmoud Salim, Anum Shahid Waleed, Prajna Hegde, Vrushali Hegde, Deepa Prakash, Ilaadevi Hegde, Kavita Katti, Alice Raphael Karikachery, Emilie Roger, Anne Landreau, Kattesh V Katti","doi":"10.2147/NSA.S478533","DOIUrl":"https://doi.org/10.2147/NSA.S478533","url":null,"abstract":"<p><strong>Purpose: </strong>Breast cancer is a significant global health issue, contributing to 15% of cancer-related deaths. Our laboratory has pioneered a novel approach, combining Ayurvedic principles with green nanotechnology, to develop a scientifically rigorous medical modality referred to as Nano-Ayurvedic Medicine, recently approved by the US Patents and Trademarks Office. Here in we report a new Nano-Ayurvedic medicine agent derived from gold nanoparticles encapsulated with phytochemicals from <i>Ginkgo biloba</i> plant (GB-AuNPs).</p><p><strong>Methods: </strong>We have developed biocompatible gold nanoparticles using electron-rich phytochemicals from <i>Ginkgo biloba</i> as reducing agent cocktail. <i>Ginkgo biloba</i> phytochemical-encapsulated gold nanoparticles (GB-AuNPs) were fully characterized, and their anticancer activity, including immunomodulatory profiles, were evaluated against breast (MDAMB-231) cancer cell lines.</p><p><strong>Results: </strong>Characterization revealed spherical morphology for GB-AuNPs and possessed optimum in vitro stability through high zeta potential of -34 mV for optimum in vivo stability. The core size of GB-AuNPs of 19 nm allows for penetration into tumor cells through both EPR effects as well as through the receptor-mediated endocytosis. The Antitumor efficacy of this nano-ayurvedic medicine agent revealed strong antitumor effects of GB-AuNPs towards MDAMB-231. Our investigations reveal that GB-AuNPs enhance anti-tumor cytokines (IL-12, TNF-α, IFN-γ) and reduce pro-tumor cytokines (IL-10, IL-6), promoting the conversion of protumor M2 macrophages into M1-like macrophage antitumor phenotype. Cellular studies show that GB-AuNPs offer superior anti-tumor efficacy and a better safety profile against breast tumors compared to cisplatin.</p><p><strong>Conclusion: </strong>Our investigations have demonstrated that the nano-ayurvedic medicine agent, GB-AuNPs, treats cancers through an immunomodulatory mechanism facilitated by elevated levels of anti-tumor cytokines (TNF-α, IFN-γ and IL-12) with concomitant downregulation of pro-tumor cytokines expression (IL-6 and IL-10). The green nanotechnology approach for the development of nano-ayurvedic medicine agent (GB-AuNPs), as described in this paper, presents new and attractive opportunities for treating human cancers and other debilitating diseases and disorders.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"189-210"},"PeriodicalIF":4.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430862/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marta Kutwin, Malwina Sosnowska-Ławnicka, Barbara Nasiłowska, Agata Lange, Mateusz Wierzbicki, Sławomir Jaworski
{"title":"The Delivery of Mimic miRNA-7 into Glioblastoma Cells and Tumour Tissue by Graphene Oxide Nanosystems.","authors":"Marta Kutwin, Malwina Sosnowska-Ławnicka, Barbara Nasiłowska, Agata Lange, Mateusz Wierzbicki, Sławomir Jaworski","doi":"10.2147/NSA.S469193","DOIUrl":"https://doi.org/10.2147/NSA.S469193","url":null,"abstract":"<p><strong>Purpose: </strong>The use of nanotechnology in medicine has gained attention in developing drug delivery systems. GO has the potential to deliver microRNA (miRNA) mimics or antisense structures. MiRNAs regulate gene expression and their dysregulation is implicated in diseases, including cancer. This study aims to observe changes in morphology, viability, mRNA expression of mTOR/PI3K/Akt and PTEN genes in U87, U118, U251, A172 and T98 glioblastoma cells and xenograft models after GO self-assembly with mimic miRNA-7.</p><p><strong>Methods: </strong>Colloidal suspension of graphene oxide (GO) was used for obtaining the GO-mimic miRNA-7 nanosystems by self-assembly method. The ultrastructure, size distribution and ATR-FTIR and UV-Vis spectrum were analyzed. The Zeta potential was measured to verify the stability of obtained nanosystem. The entrapment efficiency, loading capacity and released kinetics of mimic miRNA-7 form GO-mimic miRNA-7 nanosystems were analyzed. The transfection efficiency into the glioblastoma cell lines U87, U118, U251, A172 and T98 of mimic miRNA-7 delivered by GO nanosystems was measure by confocal microscopy and flow cytometry. The changes at mRNA expression level of <i>mTOR, PI3K, AKT1</i> and <i>PTEN</i> genes was measured by qPCR analysis. The xenograft model of U87 and A172 tumour tissue was performed to analyze the effect at tumor size and volume after GO- mimic miRNA-7 nanosystem administration.</p><p><strong>Results: </strong>The ultrastructure of GO-mimic miRNA-7 nanosystems showed high affinity of mimic miRNA into the GO. The results of transfection efficiency, cell morphology and viability showed that GO -miRNA-7 effectively deliver mimics miRNA-7 into U87, U118, U251, A172 and T98 glioblastoma cells. This approach can reverse miRNA-7 expression's downstream effects and target the mTOR PI3K/Akt pathway observed at gene expression level, reducing xenograft tumour size and volume.</p><p><strong>Conclusion: </strong>The findings of the study could have significant implications for the development of advanced and precise GO based nanosystems specifically designed for miRNA therapy in cancer treatment.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"167-188"},"PeriodicalIF":4.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sonya Jamal Hamalaw, Fadil Abdulla Kareem, Arass Jalal Noori
{"title":"Antibacterial, Antibiofilm, and Tooth Color Preservation Capacity of Magnesium Oxide Nanoparticles Varnish (in vitro Study).","authors":"Sonya Jamal Hamalaw, Fadil Abdulla Kareem, Arass Jalal Noori","doi":"10.2147/NSA.S462771","DOIUrl":"10.2147/NSA.S462771","url":null,"abstract":"<p><strong>Purpose: </strong>Antibacterial and antibiofilm properties of magnesium oxide nanoparticles (MgONPs) mixture assessed against <i>Streptococcus mutans</i> (<i>S. mutans</i>), in addition to examining MgONPs varnish impact on the preservation of the tooth color and inhibition of methylene blue diffusion to the enamel.</p><p><strong>Methods: </strong>MgONPs mixture was prepared in deionized water (DW), absolute ethanol (E), and rosin with ethanol (RE), named varnish. The antibacterial and antibiofilm capacities of MgONPs mixtures were tested by agar well diffusion, colony-forming unit (CFU), and biofilm inhibition microtiter methods in triplicate and compared to sodium fluoride varnish (NaF) and chlorhexidine mouthwash (ChX). A spectrophotometer was used to record basic tooth color. The artificial demineralization was initiated for 96 h. Then, experimental materials were applied to the corresponding group, and 10-day pH cycles proceeded. Then, the color was recorded in the same ambient environment. The methylene blue diffusion was evaluated by staining the samples for 24 h. After that, the diffusion test was calculated by a digital camera attached to the stereomicroscope.</p><p><strong>Results: </strong>The agar well diffusion test expressed a significant inhibition zone with all MgONPs mixtures (p = 0.000), and maximum inhibition zone diameter associated with MgONPs-RE. The same finding was observed in the CFU test. Additionally, 2.5%, 5%, and 10% MgONPs-RE varnish showed strong biofilm inhibition capacity (p = 0.039) compared to NaF and ChX groups that inhibit biofilm formation moderately (p = 0.003). The study shows that the 5% MgONPs-RE varnish maintains basic tooth color with minimal methylene blue diffusion compared to NaF varnish (p = 0.00).</p><p><strong>Conclusion: </strong>Evaluating MgONPs as a mixture revealed antibacterial and antibiofilm capacity against <i>S. mutans</i> with a higher effect of MgONPs-RE varnish. Also, examining the topical effect of MgONPs-RE varnish on the preservation of the tooth color after pH cycle challenges and methylene blue diffusion to enamel confirmed the high performance of MgONPs-RE varnish at 5%.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"127-146"},"PeriodicalIF":4.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mateusz Wierzbicki, Magdalena Kot, Agata Lange, Aleksandra Kalińska, Marcin Gołębiewski, Sławomir Jaworski
{"title":"Evaluation of the Antimicrobial, Cytotoxic, and Physical Properties of Selected Nano-Complexes in Bovine Udder Inflammatory Pathogen Control.","authors":"Mateusz Wierzbicki, Magdalena Kot, Agata Lange, Aleksandra Kalińska, Marcin Gołębiewski, Sławomir Jaworski","doi":"10.2147/NSA.S447810","DOIUrl":"10.2147/NSA.S447810","url":null,"abstract":"<p><strong>Purpose: </strong><i>Mastitis</i> in dairy cows is a worldwide problem faced by dairy producers. Treatment mainly involves antibiotic therapy, however, due to widespread antibiotic resistance among bacteria, such treatments are no longer effective. For this reason, scientists are searching for new solutions to combat <i>mastitis</i>, which is caused by bacteria, fungi, and algae. One of the most promising solutions, nanotechnology, is attracting research due to its biocidal properties. The purpose of this research was to determine the biocidal properties of nanocomposites as a potential alternative to antibiotics in the control of <i>mastitis</i>, as well as to determine whether the use of nanoparticles and what concentration is safe for the breeder and the animal.</p><p><strong>Patients and methods: </strong>In this study, the effects of Ag, Au, Cu, Fe, and Pt nanoparticles and their complexes were evaluated in relation to the survival of bacteria and fungi isolated from cattle diagnosed with <i>mastitis</i>, their physicochemical properties, and their toxicity to bovine and human mammary epithelial cells BME-UV1 and HMEC (human microvascular endothelial cells). Moreover, <i>E. coli, S. aureus, C. albicans</i>, and <i>Prototheca</i> sp. invasion was assessed using the alginate bead (bioprinted) model. The NPs were tested at concentrations of 25, 12.5, 6.25, 3.125, 1.56 mg/l for Au, Ag, Cu and Fe NPs, and 10, 5, 2.5, 1.25, 0.625 mg/l for Pt.</p><p><strong>Results: </strong>With the exception of Fe and Pt, all exhibited biocidal properties against isolates, while the AgCu complex had the best effect. In addition, nanoparticles showed synergistic effects, while the low concentrations had no toxic effect on BME-UV1 and HMEC cells.</p><p><strong>Conclusion: </strong>Synergistic effects of nanoparticles and no toxicity to bovine and human cells might, in the future, be an effective alternative in the fight against microorganisms responsible for <i>mastitis</i>, and the implementation of research results in practice would reduce the percentage of dairy cows suffering from <i>mastitis</i>. The problem of increasing antibiotic resistance is posing a global threat to human's and animal's health, and requires comprehensive research to evaluate the potential use of nanoparticles - especially their complexes - as well as to determine whether nanoparticles are safe for the breeders and the animals. The conducted series of studies allows further consideration of the use of the obtained results in practice, creating a potentially new alternative to antibiotics in the treatment and prevention of <i>mastitis</i> in dairy cattle.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"77-94"},"PeriodicalIF":4.9,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marizé Cuyler, Danielle Twilley, Velaphi C Thipe, Vusani Mandiwana, Michel L Kalombo, Suprakas S Ray, Rirhandzu Shamaine Rikhotso-Mbungela, Arno Janse van Vuuren, Will Coetsee, Kattesh V Katti, Namrita Lall
{"title":"Antihistamine and Wound Healing Potential of Gold Nanoparticles Synthesized Using <i>Bulbine frutescens</i> (L.) Willd.","authors":"Marizé Cuyler, Danielle Twilley, Velaphi C Thipe, Vusani Mandiwana, Michel L Kalombo, Suprakas S Ray, Rirhandzu Shamaine Rikhotso-Mbungela, Arno Janse van Vuuren, Will Coetsee, Kattesh V Katti, Namrita Lall","doi":"10.2147/NSA.S445116","DOIUrl":"https://doi.org/10.2147/NSA.S445116","url":null,"abstract":"<p><strong>Background: </strong>Atopic dermatitis (eczema) is an inflammatory skin condition with synthetic treatments that induce adverse effects and are ineffective. One of the proposed causes for the development of the condition is the outside-in hypothesis, which states that eczema is caused by a disruption in the skin barrier. These disruptions include developing dry cracked skin, which promotes the production of histamine. <i>Bulbine frutescens</i> (BF) is traditionally used to treat wounds and eczema; however, limited research has been conducted to scientifically validate this. Furthermore, gold nanoparticles (AuNPs) have been used to repair damaged skin; however, no research has been conducted on AuNPs synthesized using BF.</p><p><strong>Purpose: </strong>The study aimed to determine whether BF alleviated skin damage through wound healing, reducing the production of histamine and investigate whether AuNPs synthesized using BF would enhance biological activity.</p><p><strong>Methods: </strong>Four extracts and four synthesized AuNPs were prepared using BF and their antiproliferative and wound healing properties against human keratinocyte cells (HaCaT) were evaluated. Thereafter, the selected samples antiproliferative activity and antihistamine activity against phorbol 12-myristate 13-acetate (PMA) stimulated granulocytes were evaluated.</p><p><strong>Results: </strong>Of the eight samples, the freeze-dried leaf juice (BFE; <i>p</i> < 0.01) extract and its AuNPs (BFEAuNPs; <i>p</i> < 0.05) displayed significant wound closure at 100 µg/mL and were further evaluated. The selected samples displayed a fifty percent inhibitory concentration (IC<sub>50</sub>) of >200 µg/mL against PMA stimulated granulocytes. Compared to the untreated (media with PMA) control (0.30 ± 0.02 ng/mL), BFEAuNPs significantly inhibited histamine production at a concentration of 100 (<i>p</i> < 0.01) and 50 µg/mL (<i>p</i> < 0.001).</p><p><strong>Conclusion: </strong>BFE and BFEAuNPs stimulated wound closure, while BFEAuNPs significantly inhibited histamine production. Further investigation into BFEAuNPs in vivo wound healing activity and whether it can target histamine-associated receptors on mast cells as a potential mechanism of action should be considered.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"59-76"},"PeriodicalIF":4.9,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suryani Suryani, Anis Yohana Chaerunisaa, I Made Joni, Ruslin Ruslin, Vica Aspadiah, Anton Anton, Ari Sartinah, La Ode Ahmad Nur Ramadhan
{"title":"The Chemical Modification to Improve Solubility of Chitosan and Its Derivatives Application, Preparation Method, Toxicity as a Nanoparticles.","authors":"Suryani Suryani, Anis Yohana Chaerunisaa, I Made Joni, Ruslin Ruslin, Vica Aspadiah, Anton Anton, Ari Sartinah, La Ode Ahmad Nur Ramadhan","doi":"10.2147/NSA.S450026","DOIUrl":"10.2147/NSA.S450026","url":null,"abstract":"<p><p>Chitosan is a functional polymer in the pharmaceutical field, including for nanoparticle drug delivery systems. Chitosan-based nanoparticles are a promising carrier for a wide range of therapeutic agents and can be administered in various routes. Solubility is the main problem for its production and utilization in large-scale industries. Chitosan modifications have been employed to enhance its solubility, including chemical modification. Many reviews have reported the chemical modification but have not focused on the specific characteristics obtained. This review focused on the modification to improve chitosan solubility. Additionally, this review also focused on the application of chitosan derivatives in nanoparticle drug delivery systems since very few similar reviews have been reported. The specific method for chitosan derivative-based nanoparticles was also reported and the latest report of chitosan, chitosan derivative, and chitosan toxicity were also described.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"41-57"},"PeriodicalIF":4.9,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}