{"title":"NDRG1 upregulation by ubiquitin proteasome system dysfunction aggravates neurodegeneration.","authors":"Tomonori Hoshino, Atsushi Mukai, Hirofumi Yamashita, Hidemi Misawa, Makoto Urushitani, Yoshitaka Tashiro, Shu-Ichi Matsuzawa, Ryosuke Takahashi","doi":"10.1186/s13041-024-01150-1","DOIUrl":"10.1186/s13041-024-01150-1","url":null,"abstract":"<p><p>Protein turnover is crucial for cell survival, and the impairment of proteostasis leads to cell death. Aging is associated with a decline in proteostasis, as the progressive accumulation of damaged proteins is a hallmark of age-related disorders such as neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). We previously discovered that the declining function of the ubiquitin-proteasome system (UPS) in motor neurons contributes to sporadic ALS pathologies, such as progressive motor neuron loss, protein accumulation, and glial activation. However, the mechanisms of UPS dysfunction-induced cell damage, such as cell death and aggregation, are not fully understood. This study used transcriptome analysis of motor neurons with UPS dysfunction and found that the expression of N-myc downstream regulated 1 (NDRG1) gets upregulated by UPS dysfunction. Additionally, the upregulation of NDRG1 induces cell death in the Neuro2a mouse neuroblastoma cell line. These results suggest that NDRG1 is a potential marker for UPS dysfunction and may play a role in neurodegeneration, such as that seen in ALS.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BrainPub Date : 2024-10-22DOI: 10.1186/s13041-024-01151-0
Jung-Hwa Tao-Cheng, Sandra Lara Moreira, Christine A Winters
{"title":"Ultrastructural characterization of hippocampal inhibitory synapses under resting and stimulated conditions.","authors":"Jung-Hwa Tao-Cheng, Sandra Lara Moreira, Christine A Winters","doi":"10.1186/s13041-024-01151-0","DOIUrl":"https://doi.org/10.1186/s13041-024-01151-0","url":null,"abstract":"<p><p>The present study uses electron microscopy to document ultrastructural characteristics of hippocampal GABAergic inhibitory synapses under resting and stimulated conditions in three experimental systems. Synaptic profiles were sampled from stratum pyramidale and radiatum of the CA1 region from (1) perfusion fixed mouse brains, (2) immersion fixed rat organotypic slice cultures, and from (3) rat dissociated hippocampal cultures of mixed cell types. Synapses were stimulated in the brain by a 5 min delay in perfusion fixation to trigger an ischemia-like excitatory condition, and by treating the two culture systems with 90 mM high K<sup>+</sup> for 2-3 min to depolarize the neurons. Upon such stimulation conditions, the presynaptic terminals of the inhibitory synapses exhibited similar structural changes to those seen in glutamatergic excitatory synapses, with depletion of synaptic vesicles, increase of clathrin-coated vesicles and appearance of synaptic spinules. However, in contrast to excitatory synapses, no structural differences were detected in the postsynaptic compartment of the inhibitory synapses upon stimulation. There were no changes in the appearance of material associated with the postsynaptic membrane or the length and curvature of the membrane. Also no change was detected in the labeling density of gephyrin, a GABAergic synaptic marker, lining the postsynaptic membrane. Furthermore, virtually all inhibitory synaptic clefts remained rigidly apposed, unlike in the case of excitatory synapses where ~ 20-30% of cleft edges were open upon stimulation, presumably to facilitate the clearance of neurotransmitters from the cleft. The fact that no open clefts were induced in inhibitory synapses upon stimulation suggests that inhibitory input may not need to be toned down under these conditions. On the other hand, similar to excitatory synapse, EGTA (a calcium chelator) induced open clefts in ~ 18% of inhibitory synaptic cleft edges, presumably disrupting similar calcium-dependent trans-synaptic bridges in both types of synapses.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494804/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BrainPub Date : 2024-10-17DOI: 10.1186/s13041-024-01148-9
Xiaoxuan Sun, Hu Meng, Tianlan Lu, Weihua Yue, Dai Zhang, Lifang Wang, Jun Li
{"title":"Mechanisms of glutamate receptors hypofunction dependent synaptic transmission impairment in the hippocampus of schizophrenia susceptibility gene Opcml-deficient mouse model.","authors":"Xiaoxuan Sun, Hu Meng, Tianlan Lu, Weihua Yue, Dai Zhang, Lifang Wang, Jun Li","doi":"10.1186/s13041-024-01148-9","DOIUrl":"https://doi.org/10.1186/s13041-024-01148-9","url":null,"abstract":"<p><p>Schizophrenia is a severe psychiatric disorder with high heritability, characterized by positive and negative symptoms as well as cognitive abnormalities. Dysfunction in glutamate synapse is strongly implicated in the pathophysiology of schizophrenia. However, the precise role of the perturbed glutamatergic system in contributing to the cognitive abnormalities of schizophrenia at the synaptic level remains largely unknown. Although our previous work found that Opcml promotes spine maturation and Opcml-deficient mice exhibit schizophrenia-related cognitive impairments, the synaptic mechanism remains unclear. By using whole-cell patch clamp recording, we found that decreased neuronal excitability and alterations in intrinsic membrane properties of CA1 PNs in Opcml-deficient mice. Furthermore, Opcml deficiency leads to impaired glutamatergic transmission in hippocampus, which is closely related to postsynaptic AMPA/NMDA receptors dysfunction, resulting in the disturbances of E/I balance. Additionally, we found that the aripiprazole which we used to ameliorate abnormal cognitive behaviors also rescued the impaired glutamatergic transmission in Opcml-deficient mice. These findings will help to understand the synaptic mechanism in schizophrenia pathogenesis, providing insights into schizophrenia therapeutics with glutamatergic disruption.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BrainPub Date : 2024-10-16DOI: 10.1186/s13041-024-01149-8
Mohammed Abubaker, Wiam Al Qasem, Kateřina Pilátová, Petr Ježdík, Eugen Kvašňák
{"title":"Theta-gamma-coupling as predictor of working memory performance in young and elderly healthy people.","authors":"Mohammed Abubaker, Wiam Al Qasem, Kateřina Pilátová, Petr Ježdík, Eugen Kvašňák","doi":"10.1186/s13041-024-01149-8","DOIUrl":"https://doi.org/10.1186/s13041-024-01149-8","url":null,"abstract":"<p><p>The relationship between working memory (WM) and neuronal oscillations can be studied in detail using brain stimulation techniques, which provide a method for modulating these oscillations and thus influencing WM. The endogenous coupling between the amplitude of gamma oscillations and the phase of theta oscillations is crucial for cognitive control. Theta/gamma peak-coupled transcranial alternating current stimulation (TGCp-tACS) can modulate this coupling and thus influence WM performance. This study investigated the effects of TGCp-tACS on WM in older adults and compared their responses with those of younger participants from our previous work who underwent the same experimental design. Twenty-eight older subjects underwent both TGCp-tACS and sham stimulation sessions at least 72 h apart. Resting-state electroencephalography (EEG) was recorded before and after the interventions, and a WM task battery with five different WM tasks was performed during the interventions to assess various WM components. Outcomes measured included WM task performance (e.g., accuracy, reaction time (RT)) and changes in power spectral density (PSD) in different frequency bands. TGCp-tACS significantly decreased accuracy and RT on the 10- and 14-point Sternberg tasks and increased RT on the Digit Symbol Substitution Test in older adults. In contrast, younger participants showed a significant increase in accuracy only on the 14-item Sternberg task. Electrophysiological analysis revealed a decrease in delta and theta PSD and an increase in high gamma PSD in both younger and older participants after verum stimulation. In conclusion, theta-gamma coupling is essential for WM and modulation of this coupling affects WM performance. The effects of TGCp-tACS on WM vary with age due to natural brain changes. To better support older adults, the study suggests several strategies to improve cognitive function, including: Adjusting stimulation parameters, applying stimulation to two sites, conducting multiple sessions, and using brain imaging techniques for precise targeting.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BrainPub Date : 2024-10-03DOI: 10.1186/s13041-024-01147-w
Jin-Sil Bae, Ji-Eun Heo, Kwon-Yul Ryu
{"title":"Proteasome inhibition suppresses the induction of lipocalin-2 upon systemic lipopolysaccharide challenge in mice.","authors":"Jin-Sil Bae, Ji-Eun Heo, Kwon-Yul Ryu","doi":"10.1186/s13041-024-01147-w","DOIUrl":"10.1186/s13041-024-01147-w","url":null,"abstract":"<p><p>Lipocalin-2 (Lcn2), a protein secreted by immune-activated cells, including reactive astrocytes, is detrimental to the brain and induces neurodegeneration. We previously showed that Lcn2 levels are reduced in primary mouse astrocytes after treatment with the proteasome inhibitor bortezomib (BTZ). However, it remains unknown whether a decrease in Lcn2 levels after BTZ treatment can also be observed in vivo and whether it reduces neurotoxicity during lipopolysaccharide (LPS)-induced systemic inflammation in vivo. To answer these questions, we performed LPS challenge experiments by intraperitoneal injection in mice and found that Lcn2 levels were significantly increased in the brain, recapitulating in vitro experiments using astrocytes. Co-administration of LPS and BTZ reduced the Lcn2 levels compared to the levels in LPS-treated controls. Upon LPS challenge, the expression levels of glial marker genes were upregulated in the mouse brain. Of note, this upregulation was hampered by the co-administration of BTZ. Taken together, our results suggested that BTZ can reduce LPS-induced Lcn2 levels and may alleviate LPS-induced neuroinflammation and neurotoxicity in mice.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BrainPub Date : 2024-10-01DOI: 10.1186/s13041-024-01142-1
Wiam Al Qasem, Mohammed Abubaker, Kateřina Pilátová, Petr Ježdík, Eugen Kvašňák
{"title":"Improving working memory by electrical stimulation and cross-frequency coupling.","authors":"Wiam Al Qasem, Mohammed Abubaker, Kateřina Pilátová, Petr Ježdík, Eugen Kvašňák","doi":"10.1186/s13041-024-01142-1","DOIUrl":"10.1186/s13041-024-01142-1","url":null,"abstract":"<p><p>Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electroacupuncture inhibited carrageenan-induced pain aversion by activating GABAergic neurons in the ACC.","authors":"Yichen Zhu, Haiju Sun, Siqi Xiao, Zui Shen, Xixiao Zhu, Yifang Wang, Xiaofen He, Boyi Liu, Yongliang Jiang, Yi Liang, Janqiao Fang, Xiaomei Shao","doi":"10.1186/s13041-024-01144-z","DOIUrl":"https://doi.org/10.1186/s13041-024-01144-z","url":null,"abstract":"<p><p>Pain aversion is an avoidance response to painful stimuli. Previous research has indicated that the anterior cingulate cortex (ACC) is involved in pain aversion processing. However, as interneurons, the role of GABAergic neurons in the ACC (GABA<sup>ACC</sup> neurons) in pain aversion is still unclear. Electroacupuncture (EA) has been shown to ameliorate pain aversion, but the mechanism is not clarified. The present study provided evidence that inhibition of GABA<sup>ACC</sup> neurons contributed to pain aversion. EA alleviated pain aversion by activating GABA<sup>ACC</sup> neurons in an intensity-dependent manner. Specifically, 0.3 mA EA stimulation showed better effects on pain aversion than 0.1 mA stimulation, which could be reversed by chemical genetic inhibition of GABA<sup>ACC</sup> neurons. These results provide a novel mechanism by which EA alleviates pain aversion by reversing GABA<sup>ACC</sup> neurons.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BrainPub Date : 2024-09-27DOI: 10.1186/s13041-024-01145-y
Zuzana Bačová, Bohumila Jurkovičová-Tarabová, Tomáš Havránek, Denisa Mihalj, Veronika Borbélyová, Zdenko Pirnik, Boris Mravec, Daniela Ostatníková, Ján Bakoš
{"title":"Shank3 deficiency alters midbrain GABAergic neuron morphology, GABAergic markers and synaptic activity in primary striatal neurons.","authors":"Zuzana Bačová, Bohumila Jurkovičová-Tarabová, Tomáš Havránek, Denisa Mihalj, Veronika Borbélyová, Zdenko Pirnik, Boris Mravec, Daniela Ostatníková, Ján Bakoš","doi":"10.1186/s13041-024-01145-y","DOIUrl":"10.1186/s13041-024-01145-y","url":null,"abstract":"<p><p>Abnormalities in gamma-aminobutyric acid (GABA)ergic neurotransmission play a role in the pathogenesis of autism, although the mechanisms responsible for alterations in specific brain regions remain unclear. Deficits in social motivation and interactions are core symptoms of autism, likely due to defects in dopaminergic neural pathways. Therefore, investigating the morphology and functional roles of GABAergic neurons within dopaminergic projection areas could elucidate the underlying etiology of autism. The aim of this study was to (1) compare the morphology and arborization of glutamate decarboxylase (GAD)-positive neurons from the midbrain tegmentum; (2) evaluate synaptic activity in primary neurons from the striatum; and (3) assess GABAergic postsynaptic puncta in the ventral striatum of wild-type (WT) and Shank3-deficient mice. We found a significant decrease in the number of short neurites in GAD positive primary neurons from the midbrain tegmentum in Shank3-deficient mice. The application of a specific blocker of GABA<sub>A</sub> receptors (GABA<sub>A</sub>R) revealed significantly increased frequency of spontaneous postsynaptic currents (sPSCs) in Shank3-deficient striatal neurons compared to their WT counterparts. The mean absolute amplitude of the events was significantly higher in striatal neurons from Shank3-deficient compared to WT mice. We also observed a significant reduction in gephyrin/GABA<sub>A</sub>R γ2 colocalization in the striatum of adult male Shank3-deficient mice. The gene expression of collybistin was significantly lower in the nucleus accumbens while gephyrin and GABA<sub>A</sub>R γ2 were lower in the ventral tegmental area (VTA) in male Shank3-deficient compared to WT mice. In conclusion, Shank3 deficiency leads to alterations in GABAergic neurons and impaired GABAergic function in dopaminergic brain areas. These changes may underlie autistic symptoms, and potential interventions modulating GABAergic activity in dopaminergic pathways may represent new treatment modality.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"γ-Aminobutyric acid type A receptor β1 subunit gene polymorphisms are associated with the sedative and amnesic effects of midazolam.","authors":"Yoshihiko Kosaki, Daisuke Nishizawa, Junko Hasegawa, Kaori Yoshida, Kazutaka Ikeda, Tatsuya Ichinohe","doi":"10.1186/s13041-024-01141-2","DOIUrl":"10.1186/s13041-024-01141-2","url":null,"abstract":"<p><p>Midazolam is widely used for intravenous sedation. However, wide interindividual variability is seen in the sensitivity to midazolam. The association between genetic factors and interindividual differences in midazolam sensitivity remains unclear. The present study explored the association between common genetic variants and sedative and amnesic effects of midazolam. This prospective study included patients who were scheduled to undergo dental procedures under intravenous sedation. The sedative effect was evaluated using the Ramsay sedation scale 5 min after midazolam (0.05 mg/kg) administration. We employed two parallel approaches in this study: genome-wide approach and candidate gene approach. The γ-aminobutyric acid type A receptor subunit genes were selected as candidate genes. Multivariate linear regression analyses were performed to investigate the association between the Ramsay sedation scale and genetic variants. We also analyzed the association between the presence of anterograde amnesia and genetic variants using multivariate binominal logistic regression analyses. The analyses were adjusted for potential confounding factors. A total of 191 patients were included in the analyses. In the genome-wide association analyses, no significant association was found between the genetic variants and Ramsay scores. In the candidate gene analyses, the rs73247636 (dominant model: β = 0.72 [95% confidence interval, 0.34 to 1.10], P < 0.001) and rs56278524 (dominant model: β = 0.73 [0.37 to 1.10], P < 0.001) polymorphisms of the GABRB1 gene were significantly associated with Ramsay scores. Additionally, the rs73247636 (dominant model: odds ratio [OR] = 8.39 [2.36 to 29.85], P = 0.001) and rs56278524 (dominant model: OR = 15.26 [3.42 to 68.07], P < 0.001) polymorphisms were also significantly associated with the presence of anterograde amnesia. The rs73247636 and rs56278524 single-nucleotide polymorphisms of GABRB1 were associated with the sedative and amnesic effects of midazolam.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BrainPub Date : 2024-09-27DOI: 10.1186/s13041-024-01139-w
Elham Shojaeinia, Teresa L Mastracci, Remon Soliman, Orrin Devinsky, Camila V Esguerra, Alexander D Crawford
{"title":"Deoxyhypusine synthase deficiency syndrome zebrafish model: aberrant morphology, epileptiform activity, and reduced arborization of inhibitory interneurons.","authors":"Elham Shojaeinia, Teresa L Mastracci, Remon Soliman, Orrin Devinsky, Camila V Esguerra, Alexander D Crawford","doi":"10.1186/s13041-024-01139-w","DOIUrl":"10.1186/s13041-024-01139-w","url":null,"abstract":"<p><p>DHPS deficiency syndrome is an ultra-rare neurodevelopmental disorder (NDD) which results from biallelic mutations in the gene encoding the enzyme deoxyhypusine synthase (DHPS). DHPS is essential to synthesize hypusine, a rare amino acid formed by post-translational modification of a conserved lysine in eukaryotic initiation factor 5 A (eIF5A). DHPS deficiency syndrome causes epilepsy, cognitive and motor impairments, and mild facial dysmorphology. In mice, a brain-specific genetic deletion of Dhps at birth impairs eIF5A<sup>HYP</sup>-dependent mRNA translation. This alters expression of proteins required for neuronal development and function, and phenotypically models features of human DHPS deficiency. We studied the role of DHPS in early brain development using a zebrafish loss-of-function model generated by knockdown of dhps expression with an antisense morpholino oligomer (MO) targeting the exon 2/intron 2 (E2I2) splice site of the dhps pre-mRNA. dhps knockdown embryos exhibited dose-dependent developmental delay and dysmorphology, including microcephaly, axis truncation, and body curvature. In dhps knockdown larvae, electrophysiological analysis showed increased epileptiform activity, and confocal microscopy analysis revealed reduced arborisation of GABAergic neurons. Our findings confirm that hypusination of eIF5A by DHPS is needed for early brain development, and zebrafish with an antisense knockdown of dhps model features of DHPS deficiency syndrome.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}