{"title":"Unraveling the mystery: How autophagy deficiency in dopaminergic neurons drives human Parkinson's disease.","authors":"Sachiko Noda, Nobutaka Hattori","doi":"10.1186/s13041-025-01235-5","DOIUrl":null,"url":null,"abstract":"<p><p>Alpha-synuclein (α-synuclein), a key component of Lewy body pathology, is a classical hallmark of Parkinson's disease. In previous studies, our group has examined dopaminergic neuron-specific Atg7 autophagy-deficient mice, observing α-synuclein aggregation in vivo. This pathological process led to dopamine neuron loss and age-related motor impairments. Further, in a recent study, we developed a new mouse model by crossing human α-synuclein bacterial artificial chromosome transgenic mice with dopaminergic neuron-specific Atg7 conditional knockout mice to further investigate these mechanisms. These model mice exhibited accelerated Lewy body-like pathology and motor dysfunction, providing additional evidence that autophagy deficiency exacerbates synuclein toxicity in vivo. This nano-review provides essential clues that autophagy deficiency in dopamine neurons may contribute to the onset of human synuclein diseases.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"66"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288268/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01235-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alpha-synuclein (α-synuclein), a key component of Lewy body pathology, is a classical hallmark of Parkinson's disease. In previous studies, our group has examined dopaminergic neuron-specific Atg7 autophagy-deficient mice, observing α-synuclein aggregation in vivo. This pathological process led to dopamine neuron loss and age-related motor impairments. Further, in a recent study, we developed a new mouse model by crossing human α-synuclein bacterial artificial chromosome transgenic mice with dopaminergic neuron-specific Atg7 conditional knockout mice to further investigate these mechanisms. These model mice exhibited accelerated Lewy body-like pathology and motor dysfunction, providing additional evidence that autophagy deficiency exacerbates synuclein toxicity in vivo. This nano-review provides essential clues that autophagy deficiency in dopamine neurons may contribute to the onset of human synuclein diseases.
期刊介绍:
Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings.
Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.