Chronic oral administration of ibrutinib prevents long-term memory deficits and reduces AD pathology and neuroinflammatory responses in a mouse model of AD.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Hyun-Ju Lee, Sora Kang, Yoo Joo Jeong, Jin-Hee Park, Jeong-Woo Hwang, Chan-Hu Gu, Tae-Mi Jung, Seokjun Oh, Ji-Yeong Jang, Hyang-Sook Hoe
{"title":"Chronic oral administration of ibrutinib prevents long-term memory deficits and reduces AD pathology and neuroinflammatory responses in a mouse model of AD.","authors":"Hyun-Ju Lee, Sora Kang, Yoo Joo Jeong, Jin-Hee Park, Jeong-Woo Hwang, Chan-Hu Gu, Tae-Mi Jung, Seokjun Oh, Ji-Yeong Jang, Hyang-Sook Hoe","doi":"10.1186/s13041-025-01225-7","DOIUrl":null,"url":null,"abstract":"<p><p>We previously demonstrated that ibrutinib has therapeutic efficacy against AD pathologies when injected intraperitoneally at a lower dosage (10 mg/kg, daily for 2 weeks) or orally at a higher dosage (30 mg/kg, daily for 1 month) in AD mice models. However, the effect of chronic lower dose of ibrutinib by oral administration on AD pathologies has not been investigated yet. Therefore, we investigated whether long-term oral administration of ibrutinib at a lower dose (1 or 10 mg/kg, daily for 5 months) on AD pathology and in vivo toxicity in 5xFAD mice. We found ibrutinib enhanced cognitive function and alleviated Aβ pathology in 5xFAD mice without hepatotoxicity. Furthermore, ibrutinib-treated 5xFAD mice decrease tau hyperphosphorylation, p-GSK3α/β levels, and markers of neuroinflammation such as Iba-1, GFAP, and NLRP3. Collectively, these translational studies indicate chronic oral administration of ibrutinib at low doses improves cognitive function and suppresses AD pathology/neuroinflammation in an AD mice model thereby having potential as an effective multitarget AD therapeutic in clinical application.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"65"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01225-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We previously demonstrated that ibrutinib has therapeutic efficacy against AD pathologies when injected intraperitoneally at a lower dosage (10 mg/kg, daily for 2 weeks) or orally at a higher dosage (30 mg/kg, daily for 1 month) in AD mice models. However, the effect of chronic lower dose of ibrutinib by oral administration on AD pathologies has not been investigated yet. Therefore, we investigated whether long-term oral administration of ibrutinib at a lower dose (1 or 10 mg/kg, daily for 5 months) on AD pathology and in vivo toxicity in 5xFAD mice. We found ibrutinib enhanced cognitive function and alleviated Aβ pathology in 5xFAD mice without hepatotoxicity. Furthermore, ibrutinib-treated 5xFAD mice decrease tau hyperphosphorylation, p-GSK3α/β levels, and markers of neuroinflammation such as Iba-1, GFAP, and NLRP3. Collectively, these translational studies indicate chronic oral administration of ibrutinib at low doses improves cognitive function and suppresses AD pathology/neuroinflammation in an AD mice model thereby having potential as an effective multitarget AD therapeutic in clinical application.

慢性口服依鲁替尼可预防长期记忆缺陷,减少阿尔茨海默病小鼠模型的病理和神经炎症反应。
我们之前证明,在AD小鼠模型中,ibrutinib以较低剂量(10 mg/kg,每天2周)腹腔注射或以较高剂量(30 mg/kg,每天1个月)口服对AD病理有治疗作用。然而,长期低剂量口服依鲁替尼对阿尔茨海默病病理的影响尚未见研究。因此,我们研究了低剂量长期口服伊鲁替尼(1或10 mg/kg,每天5个月)对5xFAD小鼠AD病理和体内毒性的影响。我们发现伊鲁替尼增强了5xFAD小鼠的认知功能,减轻了Aβ病理,无肝毒性。此外,伊鲁替尼治疗的5xFAD小鼠降低了tau过度磷酸化、p-GSK3α/β水平和神经炎症标志物,如Iba-1、GFAP和NLRP3。总的来说,这些转化性研究表明,在AD小鼠模型中,低剂量的慢性口服依鲁替尼可以改善认知功能,抑制AD病理/神经炎症,从而具有在临床应用中作为有效的多靶点AD治疗药物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信