Molecular Oral Microbiology最新文献

筛选
英文 中文
Differential oral microbiome in nonhuman primates from periodontitis-susceptible and periodontitis-resistant matrilines. 牙周炎易感和抗牙周炎母系非人灵长类动物口腔微生物组的差异。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-04-01 DOI: 10.1111/omi.12377
Jeffrey L Ebersole, Sreenatha Kirakodu, Octovio Gonzalez
{"title":"Differential oral microbiome in nonhuman primates from periodontitis-susceptible and periodontitis-resistant matrilines.","authors":"Jeffrey L Ebersole,&nbsp;Sreenatha Kirakodu,&nbsp;Octovio Gonzalez","doi":"10.1111/omi.12377","DOIUrl":"https://doi.org/10.1111/omi.12377","url":null,"abstract":"<p><p>Rhesus monkeys (n = 36) exhibiting a healthy periodontium at baseline were used to induce progressing periodontitis through ligature placement around premolar/molar teeth. Bacterial samples were collected at baseline, 0.5, 1, and 3 months of disease and at 5 months for disease resolution. The animals were distributed into two groups (18/group): 3-7 years (young) and 12-23 years (adult) and stratified based upon matriline susceptibility to periodontitis (PDS, susceptible; PDR, resistant). A total of 444 operational taxonomic units (OTUs) with 100 microbes representing a core microbiome present in ≥75% of the samples were identified. Only 48% of the major phylotypes overlapped in the PDS and PDR samples. Different OTU abundance patterns were seen in young animals from the PDS and PDR matrilines, with qualitative similarities during disease and the relative abundance of phylotypes becoming less diverse. In adults, 23 OTUs were increased during disease in PDS samples and 24 in PDR samples; however, only five were common between these groups. Greater diversity of OTU relative abundance at baseline was observed with adult compared to young oral samples from both the PDS and PDR groups. With disease initiation (2 weeks), less diversity of relative abundance and some distinctive increases in specific OTUs were noted. By 1 month, there was considerable qualitative homogeneity in the major OTUs in both groups; however, by 3 months, there was an exacerbation of both qualitative and quantitative differences in the dominant OTUs between the PDS and PDR samples. These results support that some differences in disease expression related to matriline (familial) periodontitis risk may be explained by microbiome features.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9659737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multispecies biofilm behavior and host interaction support the association of Tannerella serpentiformis with periodontal health. 多物种生物膜行为和宿主相互作用支持蛇形丹那菌与牙周健康的关联。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-04-01 Epub Date: 2022-08-29 DOI: 10.1111/omi.12385
Fabian L Kendlbacher, Susanne Bloch, Fiona F Hager-Mair, Johanna Bacher, Bettina Janesch, Thomas Thurnheer, Oleh Andrukhov, Christina Schäffer
{"title":"Multispecies biofilm behavior and host interaction support the association of Tannerella serpentiformis with periodontal health.","authors":"Fabian L Kendlbacher, Susanne Bloch, Fiona F Hager-Mair, Johanna Bacher, Bettina Janesch, Thomas Thurnheer, Oleh Andrukhov, Christina Schäffer","doi":"10.1111/omi.12385","DOIUrl":"10.1111/omi.12385","url":null,"abstract":"<p><p>The recently identified bacterium Tannerella serpentiformis is the closest phylogenetic relative of Tannerella forsythia, whose presence in oral biofilms is associated with periodontitis. Conversely, T. serpentiformis is considered health-associated. This discrepancy was investigated in a comparative study of the two Tannerella species. The biofilm behavior was analyzed upon their addition and of Porphyromonas gingivalis-each bacterium separately or in combinations-to an in vitro five-species oral model biofilm. Biofilm composition and architecture was analyzed quantitatively using real-time PCR and qualitatively by fluorescence in situ hybridization/confocal laser scanning microscopy, and by scanning electron microscopy. The presence of T. serpentiformis led to a decrease of the total cell number of biofilm bacteria, while P. gingivalis was growth-promoting. This effect was mitigated by T. serpentiformis when added to the biofilm together with P. gingivalis. Notably, T. serpentiformis outcompeted T. forsythia numbers when the two species were simultaneously added to the biofilm compared to biofilms containing T. forsythia alone. Tannerella serpentiformis appeared evenly distributed throughout the multispecies biofilm, while T. forsythia was surface-located. Adhesion and invasion assays revealed that T. serpentiformis was significantly less effective in invading human gingival epithelial cells than T. forsythia. Furthermore, compared to T. forsythia, a higher immunostimulatory potential of human gingival fibroblasts and macrophages was revealed for T. serpentiformis, based on mRNA expression levels of the inflammatory mediators interleukin 6 (IL-6), IL-8, monocyte chemoattractant protein-1 and tumor necrosis factor α, and production of the corresponding proteins. Collectively, these data support the potential of T. serpentiformis to interfere with biological processes relevant to the establishment of periodontitis.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9291127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Leuconostoc mesenteroides MJM60376 as an oral probiotic and its antibiofilm activity. 肠系膜白菌MJM60376的口服益生菌特性及其抗膜活性。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-04-01 DOI: 10.1111/omi.12397
Mingkun Gu, Huong Thi Nguyen, Joo-Hyung Cho, Joo-Won Suh, Jinhua Cheng
{"title":"Characterization of Leuconostoc mesenteroides MJM60376 as an oral probiotic and its antibiofilm activity.","authors":"Mingkun Gu,&nbsp;Huong Thi Nguyen,&nbsp;Joo-Hyung Cho,&nbsp;Joo-Won Suh,&nbsp;Jinhua Cheng","doi":"10.1111/omi.12397","DOIUrl":"https://doi.org/10.1111/omi.12397","url":null,"abstract":"<p><p>Lactic acid bacteria have been widely used as probiotics for improving gut health. However, studies on oral probiotics were very limited. In this study, 67 lactic acid bacteria (LAB) were isolated from fermented food and screened for antagonistic activity against Streptococcus mutans, the causative pathogen of dental caries. Leuconostoc mesenteroides MJM60376 showed the highest antagonistic activity against S. mutans KCTC3065. L. mesenteroides MJM60376 also showed oral probiotic characteristics including weak acid production, lysozyme tolerance, adhesion to oral epithelial cell (YD-38), antibiotic susceptibility, and good coaggregation ability with S. mutans. Furthermore, the biofilm formation of S. mutans was significantly reduced when cocultured with L. mesenteroides. Scanning electron microscopy analysis showed that amounts of attached bacteria of S. mutans and network-like structures were significantly reduced by L. mesenteroides MJM60376. Cell-free supernatant (CFS) of L. mesenteroides MJM60376 also greatly inhibited biofilm formation of S. mutans from the adherent stage, the activity remained even after it was treated with catalase, trypsin, or pH neutralized. Expression levels of biofilm formation-related genes were significantly reduced in S. mutans when it was treated with the CFS of L. mesenteroides MJM60376. Therefore, L. mesenteroides MJM60376 has great potential to be used as a multifunctional ingredient.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9344285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Streptococcus mutans dexA affects exopolysaccharides production and biofilm homeostasis. 变形链球菌dexA影响胞外多糖的产生和生物膜的稳态。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-04-01 DOI: 10.1111/omi.12395
Yang Yan, He Hailun, Yang Fenghui, Liu Pingting, Lei Lei, Zhao Zhili, Hu Tao
{"title":"Streptococcus mutans dexA affects exopolysaccharides production and biofilm homeostasis.","authors":"Yang Yan,&nbsp;He Hailun,&nbsp;Yang Fenghui,&nbsp;Liu Pingting,&nbsp;Lei Lei,&nbsp;Zhao Zhili,&nbsp;Hu Tao","doi":"10.1111/omi.12395","DOIUrl":"https://doi.org/10.1111/omi.12395","url":null,"abstract":"<p><strong>Objectives: </strong>The study aimed to evaluate the role of Streptococcus mutans (S. mutans) dexA gene on biofilm structure and microecological distribution in multispecies biofilms.</p><p><strong>Materials and methods: </strong>A multispecies biofilm model consisting of S. mutans and its dexA mutants, Streptococcus gordonii (S. gordonii) and Streptococcus sanguinis (S. sanguinis) was constructed, and bacterial growth, biofilm architecture and microbiota composition were determined to study the effect of the S. mutans dexA on multispecies biofilms.</p><p><strong>Results: </strong>Our results showed that either deletion or overexpression of S. mutans dexA had no effect on the planktonic growth of bacterium, while S. mutans dominated in the multispecies biofilms to form cariogenic biofilms. Furthermore, we revealed that the SmudexA+ group showed structural abnormality in the form of more fractures and blank areas. The morphology of the SmudexA group was sparser and more porous, with reduced and less agglomerated exopolysaccharides scaffold. Interestingly, the microbiota composition analysis provided new insights that the inhibition of S. gordonii and S. sanguinis was alleviated in the SmudexA group compared to the significantly suppressed condition in the other groups.</p><p><strong>Conclusion: </strong>In conclusion, deletion of S. mutans dexA gene re-modules biofilm structure and microbiota composition, thereby leading to decreased cariogenicity. Thus, the S. mutans dexA may be an important target for regulating the cariogenicity of dental plaque biofilms, expecting to be a probiotic for caries control.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9660235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Protein interactome mapping of Porphyromonas gingivalis provides insights into the formation of the PorQ-Z complex of the type IX secretion system. 牙龈卟啉单胞菌蛋白质相互作用组图谱揭示了九型分泌系统 PorQ-Z 复合物的形成过程。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-02-01 Epub Date: 2022-08-03 DOI: 10.1111/omi.12383
Dhana G Gorasia, Paul D Veith, Eric C Reynolds
{"title":"Protein interactome mapping of Porphyromonas gingivalis provides insights into the formation of the PorQ-Z complex of the type IX secretion system.","authors":"Dhana G Gorasia, Paul D Veith, Eric C Reynolds","doi":"10.1111/omi.12383","DOIUrl":"10.1111/omi.12383","url":null,"abstract":"<p><p>Porphyromonas gingivalis is an anaerobic Gram-negative human oral pathogen highly associated with the more severe forms of periodontal disease. Porphyromonas gingivalis utilises the type IX secretion system (T9SS) to transport ∼30 cargo proteins, including multiple virulence factors, to the cell surface. The T9SS is a multiprotein system consisting of at least 20 proteins, and recently, we characterised the protein interactome of these components. Similar to the T9SS, almost all biological processes are mediated through protein-protein interactions (PPIs). Therefore, mapping PPIs is important to understand the biological functions of many proteins in P. gingivalis. Herein, we provide native migration profiles of over 1000 P. gingivalis proteins. Using the T9SS, we demonstrate that our dataset is a useful resource for identifying novel protein interactions. Using this dataset and further analysis of T9SS P. gingivalis mutants, we discover new mechanistic insights into the formation of the PorQ-Z complex of the T9SS. This dataset is a valuable resource for studies of P. gingivalis.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10734589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased sensitivity of Aggregatibacter actinomycetemcomitans to human serum is mediated by induction of a bacteriophage. 通过诱导噬菌体介导放线菌聚合杆菌对人血清的敏感性增加。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-02-01 DOI: 10.1111/omi.12378
Gaoyan G Tang-Siegel, Casey Chen, Keith P Mintz
{"title":"Increased sensitivity of Aggregatibacter actinomycetemcomitans to human serum is mediated by induction of a bacteriophage.","authors":"Gaoyan G Tang-Siegel,&nbsp;Casey Chen,&nbsp;Keith P Mintz","doi":"10.1111/omi.12378","DOIUrl":"https://doi.org/10.1111/omi.12378","url":null,"abstract":"<p><p>Aggregatibacter actinomycetemcomitans, a Gram-negative oral pathobiont causing aggressive periodontitis and systemic infections, demonstrates serum resistance. We have identified a dsDNA-tailed bacteriophage, S1249, which was found to convert from this microorganism inducible by human serum into a lytic state to kill the bacterium. This phage demonstrated active transcripts when exposed to human serum: 20% of genes were upregulated more than 10-fold, and 45% of them were upregulated 5-10-fold when the bacterium was grown in the presence of human serum compared to without the presence of human serum. Transcriptional activation when grown in equine serum was less pronounced. This phage demonstrated a tail with inner rigid tubes and an outer contractile sheath, features of Myoviridae spp. Further characterization revealed that the lysogenized integration of the phage in the chromosome of A. actinomycetemcomitans occurred between the genes encoding cold-shock DNA-binding domain-containing protein (csp) and glutamyl-tRNA synthetase (gltX). Both phage DNA integrated lysogeny and nonintegrated pseudolysogeny were identified in the infected bacterium. A newly generated, lysogenized strain using this phage displayed similar attributes, including 63% growth inhibition compared to its isogenic phage-free strain when in the presence of human serum. Our data suggest that bacteriophage S1249 can be induced in the presence of human serum and enters the lytic cycle, which reduces the viability of infected bacteria in vivo.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9284979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis. 口腔微生物群在口腔肿瘤发生、肿瘤进展和转移中的作用。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-02-01 DOI: 10.1111/omi.12403
Ruohan Li, Li Xiao, Tao Gong, Jiaxin Liu, Yuqing Li, Xuedong Zhou, Yi Li, Xin Zheng
{"title":"Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis.","authors":"Ruohan Li,&nbsp;Li Xiao,&nbsp;Tao Gong,&nbsp;Jiaxin Liu,&nbsp;Yuqing Li,&nbsp;Xuedong Zhou,&nbsp;Yi Li,&nbsp;Xin Zheng","doi":"10.1111/omi.12403","DOIUrl":"https://doi.org/10.1111/omi.12403","url":null,"abstract":"<p><p>Squamous cell carcinoma is the most common malignant tumor of the oral cavity and its adjacent sites, which endangers the physical and mental health of patients and has a complex etiology. Chronic infection is considered to be a risk factor in cancer development. Evidence suggests that periodontal pathogens, such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Treponema denticola, are associated with oral squamous cell carcinoma (OSCC). They can stimulate tumorigenesis by promoting epithelial cells proliferation while inhibiting apoptosis and regulating the inflammatory microenvironment. Candida albicans promotes OSCC progression and metastasis through multiple mechanisms. Moreover, oral human papillomavirus (HPV) can induce oropharyngeal squamous cell carcinoma (OPSCC). There is evidence that HPV16 can integrate with host cells' DNA and activate oncogenes. Additionally, oral dysbiosis and synergistic effects in the oral microbial communities can promote cancer development. In this review, we will discuss the biological characteristics of oral microbiome associated with OSCC and OPSCC and then highlight the mechanisms by which oral microbiome is involved in oral oncogenesis, tumor progression, and metastasis. These findings may have positive implications for early diagnosis and treatment of oral cancer.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9295759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Reduced proinflammatory activity of outer membrane vesicles of Tannerella forsythia treated with quorum sensing inhibitors. 群体感应抑制剂对单宁外膜囊泡促炎活性的影响。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-02-01 DOI: 10.1111/omi.12380
Sun-Jin An, Kyung-Won Ha, Hye-Kyoung Jun, Hyun Young Kim, Bong-Kyu Choi
{"title":"Reduced proinflammatory activity of outer membrane vesicles of Tannerella forsythia treated with quorum sensing inhibitors.","authors":"Sun-Jin An,&nbsp;Kyung-Won Ha,&nbsp;Hye-Kyoung Jun,&nbsp;Hyun Young Kim,&nbsp;Bong-Kyu Choi","doi":"10.1111/omi.12380","DOIUrl":"https://doi.org/10.1111/omi.12380","url":null,"abstract":"<p><p>Outer membrane vesicles (OMVs) of bacteria harbor physiologically active molecules, and quorum sensing inhibitors (QSIs) are expected to regulate bacterial virulence. In this study, we analyzed the proinflammatory activity of OMVs of the periodontal pathogen Tannerella forsythia treated with d-arabinose and d-galactose as QSIs, which inhibit the biofilm formation of periodontal pathogens and autoinducer 2 activity. Compared to OMVs of nontreated T. forsythia (TF OMVs), OMVs released from QSI-treated T. forsythia, designated TF ara-OMVs and TF gal-OMVs, showed reduced production of TNF-α, IL-1β, IL-6, and IL-8 in THP-1 monocytes through decreased activation of NF-κB/MAPKs. Using a human NF-κB reporter cell line and bone marrow-derived macrophages from TLR2<sup>-/-</sup> mice, TF ara-OMVs and TF gal-OMVs showed less activation of TLR2 than TF OMVs. These results demonstrated that QSIs provide a dual advantage against bacterial infection by inhibiting bacterial biofilm formation and generating OMVs with reduced proinflammatory activity.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10734592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of FA1654: A putative DPS protein in Filifactor alocis. FA1654:一种推测为alocis丝状因子DPS蛋白的表征。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-02-01 DOI: 10.1111/omi.12398
Malissa Mangar, Arunima Mishra, Zhengrong Yang, Champion Deivanayagam, Hansel M Fletcher
{"title":"Characterization of FA1654: A putative DPS protein in Filifactor alocis.","authors":"Malissa Mangar,&nbsp;Arunima Mishra,&nbsp;Zhengrong Yang,&nbsp;Champion Deivanayagam,&nbsp;Hansel M Fletcher","doi":"10.1111/omi.12398","DOIUrl":"https://doi.org/10.1111/omi.12398","url":null,"abstract":"<p><p>The survival/adaptation of Filifactor alocis, a fastidious Gram-positive asaccharolytic anaerobe, to the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. Moreover, its pathogenic characteristics are highlighted by its capacity to survive in the oxidative-stress microenvironment of the periodontal pocket and a likely ability to modulate the microbial community dynamics. There is still a significant gap in our understanding of its mechanism of oxidative stress resistance and its impact on the virulence and pathogenicity of the microbial biofilm. Coinfection of epithelial cells with F. alocis and Porphyromonas gingivalis resulted in the upregulation of several genes, including HMPREF0389_01654 (FA1654). Bioinformatics analysis indicates that FA1654 has a \"di-iron binding domain\" and could function as a DNA starvation and stationary phase protection (DPS) protein. We have further characterized the FA1654 protein to determine its role in oxidative stress resistance in F. alocis. In the presence of hydrogen peroxide-induced oxidative stress, there was an ∼1.3 fold upregulation of the FA1654 gene in F. alocis. Incubation of the purified FA1654 protein with DNA in the presence of hydrogen peroxide and iron resulted in the protection of the DNA from Fenton-mediated degradation. Circular dichroism and differential scanning fluorimetry studies have documented the intrinsic ability of rFA1654 protein to bind iron; however, the rFA1654 protein is missing the intrinsic ability to reduce hydrogen peroxide. Collectively, the data may suggest that FA1654 in F. alocis is involved in oxidative stress resistance via an ability to protect against Fenton-mediated oxidative stress-induced damage.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905271/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9324961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Transcriptional analysis of the mfa-cluster genes in Porphyromonas gingivalis strains with one and two mfa5 genes. 含1个和2个mfa5基因的牙龈卟啉单胞菌mfa簇基因的转录分析。
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2023-02-01 DOI: 10.1111/omi.12399
Mari Fujita, Chen-Hsuan Chiu, Keiji Nagano
{"title":"Transcriptional analysis of the mfa-cluster genes in Porphyromonas gingivalis strains with one and two mfa5 genes.","authors":"Mari Fujita,&nbsp;Chen-Hsuan Chiu,&nbsp;Keiji Nagano","doi":"10.1111/omi.12399","DOIUrl":"https://doi.org/10.1111/omi.12399","url":null,"abstract":"<p><p>The Porphyromonas gingivalis Mfa1 fimbria is composed of the Mfa1 to Mfa5 proteins, encoded by the mfa1 to mfa5 genes, respectively, which are tandemly arranged on chromosomes. A recent study discovered that many P. gingivalis strains possess two mfa5 genes (called herein mfa5-1 and mfa5-2), which are also in tandem. This study examined the transcriptional unit and activity of mfa-cluster genes in strains with one (the ATCC 33277 and TDC60 strains) and two (the HG66 and A7436 strains) mfa5 genes. Complementary DNA was prepared from the total RNA extracted from the bacterial cells in the logarithmic growth phase using a random primer. PCR analysis for the intergenic regions from mfa1 to mfa5 or mfa5-2 showed that mfa1 to mfa5 or mfa5-2 formed a polycistronic gene cluster. Quantitative real-time PCR showed that the mfa1 transcription was 5-10 times higher than that of mfa2 in all the strains. However, mfa2 to mfa5 mostly showed a comparable expression. Both mfa5 genes were comparably transcribed in HG66 and A7436 strains. The transcriptional levels were almost consistent with the respective protein expression levels. In silico analysis identified a transcriptional terminator structure in the intergenic region between mfa1 and mfa2 that was probably responsible for the decreased transcription rate of mfa2 and the downstream genes.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10725549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信