实验性牙周炎期间微生物群失调的重新评估。

IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Marion Arce, Natalia Endo, Nicolas Dutzan, Loreto Abusleme
{"title":"实验性牙周炎期间微生物群失调的重新评估。","authors":"Marion Arce,&nbsp;Natalia Endo,&nbsp;Nicolas Dutzan,&nbsp;Loreto Abusleme","doi":"10.1111/omi.12382","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is a chronic inflammatory disease associated with the presence of dysbiotic microbial communities. Several studies interrogating periodontitis pathogenesis have utilized the murine ligature-induced periodontitis (LIP) model and have further examined the ligature-associated microbiome relying on 16S rRNA-based sequencing techniques. However, it is often very challenging to compare microbial profiles across studies due to important differences in bioinformatic processing and databases used for taxonomic assignment. Thus, our study aim was to reanalyze microbiome sequencing datasets from studies utilizing the LIP model through a standardized bioinformatic analysis pipeline, generating a comprehensive overview of microbial dysbiosis during experimental periodontitis.We conducted a reanalysis of 16S rDNA gene sequencing datasets from nine published studies utilizing the LIP model. Reads were grouped according to the hypervariable region of the 16S rDNA gene amplified (V1-V3 and V4), preprocessed, binned into operational taxonomic units and classified utilizing relevant databases. Alpha- and beta-diversity analyses were conducted, along with relative abundance profiling of microbial communities. Our findings revealed similar microbial richness and diversity across studies and determined shifts in microbial community structure determined by periodontitis induction and study of origin. Clear variations in the relative abundance of bacterial taxa were observed starting on day 5 after ligation and onward, consistent with a distinct microbial composition during health and experimental periodontitis. We also uncovered differentially represented bacterial taxa across studies, dominating periodontal health and LIP-associated communities. Collectively, this reanalysis provides a unified overview of microbial dysbiosis during the LIP model, providing new insights that aim to inform further studies dedicated to unraveling oral host-microbial interactions.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"37 5","pages":"180-195"},"PeriodicalIF":2.8000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A reappraisal of microbiome dysbiosis during experimental periodontitis.\",\"authors\":\"Marion Arce,&nbsp;Natalia Endo,&nbsp;Nicolas Dutzan,&nbsp;Loreto Abusleme\",\"doi\":\"10.1111/omi.12382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Periodontitis is a chronic inflammatory disease associated with the presence of dysbiotic microbial communities. Several studies interrogating periodontitis pathogenesis have utilized the murine ligature-induced periodontitis (LIP) model and have further examined the ligature-associated microbiome relying on 16S rRNA-based sequencing techniques. However, it is often very challenging to compare microbial profiles across studies due to important differences in bioinformatic processing and databases used for taxonomic assignment. Thus, our study aim was to reanalyze microbiome sequencing datasets from studies utilizing the LIP model through a standardized bioinformatic analysis pipeline, generating a comprehensive overview of microbial dysbiosis during experimental periodontitis.We conducted a reanalysis of 16S rDNA gene sequencing datasets from nine published studies utilizing the LIP model. Reads were grouped according to the hypervariable region of the 16S rDNA gene amplified (V1-V3 and V4), preprocessed, binned into operational taxonomic units and classified utilizing relevant databases. Alpha- and beta-diversity analyses were conducted, along with relative abundance profiling of microbial communities. Our findings revealed similar microbial richness and diversity across studies and determined shifts in microbial community structure determined by periodontitis induction and study of origin. Clear variations in the relative abundance of bacterial taxa were observed starting on day 5 after ligation and onward, consistent with a distinct microbial composition during health and experimental periodontitis. We also uncovered differentially represented bacterial taxa across studies, dominating periodontal health and LIP-associated communities. Collectively, this reanalysis provides a unified overview of microbial dysbiosis during the LIP model, providing new insights that aim to inform further studies dedicated to unraveling oral host-microbial interactions.</p>\",\"PeriodicalId\":18815,\"journal\":{\"name\":\"Molecular Oral Microbiology\",\"volume\":\"37 5\",\"pages\":\"180-195\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/omi.12382\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12382","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 3

摘要

牙周炎是一种慢性炎症性疾病,与存在益生菌群有关。一些关于牙周炎发病机制的研究利用小鼠结扎诱导的牙周炎(LIP)模型,并依靠基于16S rrna的测序技术进一步研究了结扎相关的微生物组。然而,由于生物信息学处理和用于分类分配的数据库的重要差异,在不同的研究中比较微生物概况通常是非常具有挑战性的。因此,我们的研究目的是通过标准化的生物信息学分析管道,利用LIP模型重新分析来自研究的微生物组测序数据集,从而全面概述实验性牙周炎期间的微生物生态失调。我们利用LIP模型对9项已发表的研究中的16S rDNA基因测序数据集进行了重新分析。根据扩增的16S rDNA基因高变区(V1-V3和V4)对Reads进行分组,进行预处理,将Reads分入可操作的分类单元,并利用相关数据库进行分类。进行了α和β多样性分析,以及微生物群落的相对丰度分析。我们的研究结果揭示了不同研究中相似的微生物丰富度和多样性,并确定了由牙周炎诱导和起源研究决定的微生物群落结构的变化。结扎后第5天开始观察到细菌分类群相对丰度的明显变化,这与健康和实验性牙周炎期间独特的微生物组成一致。我们还发现了不同研究中不同代表性的细菌分类群,它们主导牙周健康和lip相关群落。总的来说,这一再分析提供了LIP模型中微生物生态失调的统一概述,为进一步研究口腔宿主-微生物相互作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reappraisal of microbiome dysbiosis during experimental periodontitis.

Periodontitis is a chronic inflammatory disease associated with the presence of dysbiotic microbial communities. Several studies interrogating periodontitis pathogenesis have utilized the murine ligature-induced periodontitis (LIP) model and have further examined the ligature-associated microbiome relying on 16S rRNA-based sequencing techniques. However, it is often very challenging to compare microbial profiles across studies due to important differences in bioinformatic processing and databases used for taxonomic assignment. Thus, our study aim was to reanalyze microbiome sequencing datasets from studies utilizing the LIP model through a standardized bioinformatic analysis pipeline, generating a comprehensive overview of microbial dysbiosis during experimental periodontitis.We conducted a reanalysis of 16S rDNA gene sequencing datasets from nine published studies utilizing the LIP model. Reads were grouped according to the hypervariable region of the 16S rDNA gene amplified (V1-V3 and V4), preprocessed, binned into operational taxonomic units and classified utilizing relevant databases. Alpha- and beta-diversity analyses were conducted, along with relative abundance profiling of microbial communities. Our findings revealed similar microbial richness and diversity across studies and determined shifts in microbial community structure determined by periodontitis induction and study of origin. Clear variations in the relative abundance of bacterial taxa were observed starting on day 5 after ligation and onward, consistent with a distinct microbial composition during health and experimental periodontitis. We also uncovered differentially represented bacterial taxa across studies, dominating periodontal health and LIP-associated communities. Collectively, this reanalysis provides a unified overview of microbial dysbiosis during the LIP model, providing new insights that aim to inform further studies dedicated to unraveling oral host-microbial interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Oral Microbiology
Molecular Oral Microbiology DENTISTRY, ORAL SURGERY & MEDICINE-MICROBIOLOGY
CiteScore
6.50
自引率
5.40%
发文量
46
审稿时长
>12 weeks
期刊介绍: Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections. Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal. The journal does not publish Short Communications or Letters to the Editor. Molecular Oral Microbiology is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信