NanoImpact最新文献

筛选
英文 中文
Microplastics: Hidden drivers of antimicrobial resistance in aquatic systems 微塑料:水生系统中抗菌素耐药性的隐藏驱动因素
IF 4.7 3区 环境科学与生态学
NanoImpact Pub Date : 2025-04-01 DOI: 10.1016/j.impact.2025.100566
Prasun Goswami , Kazuki Kanda , Yukino Tamamura-Andoh , Mafumi Watanabe , Keerthi S. Guruge
{"title":"Microplastics: Hidden drivers of antimicrobial resistance in aquatic systems","authors":"Prasun Goswami ,&nbsp;Kazuki Kanda ,&nbsp;Yukino Tamamura-Andoh ,&nbsp;Mafumi Watanabe ,&nbsp;Keerthi S. Guruge","doi":"10.1016/j.impact.2025.100566","DOIUrl":"10.1016/j.impact.2025.100566","url":null,"abstract":"<div><div>Microplastics (MPs) in aquatic ecosystems readily promote biofilm formation, creating the plastisphere, a dynamic interface that interacts with environmental pollutants and acts as a reservoir for microorganisms. Recent studies emphasize the plastisphere's contribution to the spread of pathogens, antibiotic-resistant genes (ARGs), and antimicrobial resistance (AMR) within aquatic organisms and across diverse environments, a phenomenon collectively called the ‘Plastiome’. Although the prevalence and effects of the plastisphere have been studied extensively, a systematic synthesis of updated insights into the behavior of the plastiome is urgently needed. This review explores the development and behavior of plastics, focusing on its interactions with ARGs and pathogens within aquatic ecosystems. Microplastics selectively enrich ARGs and pathogenic microorganisms, fostering unique microbial communities distinct from those in surrounding waters. The plastiome facilitates horizontal ARG propagation, increasing the quantity of antibiotic-resistant pathogens and presenting substantial risks to the hydrosphere and public health. Additionally, key research opportunities are identified and strategies are recommended to advance our understanding of plastiome-driven antibiotic resistance in aquatic environments.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"38 ","pages":"Article 100566"},"PeriodicalIF":4.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144084449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling up the graphene production from R&D to the pilot plant stage: Implications for workers' exposure to airborne nano-objects 将石墨烯生产从研发阶段扩大到中试工厂阶段:对工人接触空气中纳米物体的影响。
IF 4.7 3区 环境科学与生态学
NanoImpact Pub Date : 2025-03-19 DOI: 10.1016/j.impact.2025.100555
Claudio Natale , Francesca Tombolini , Riccardo Ferrante , Francesca Sebastiani , Andrea Gordiani , Maurizio Manigrasso , Antonio Esau Del Rio Castillo , Francesco Bonaccorso , Stefania Sabella , Fabio Boccuni
{"title":"Scaling up the graphene production from R&D to the pilot plant stage: Implications for workers' exposure to airborne nano-objects","authors":"Claudio Natale ,&nbsp;Francesca Tombolini ,&nbsp;Riccardo Ferrante ,&nbsp;Francesca Sebastiani ,&nbsp;Andrea Gordiani ,&nbsp;Maurizio Manigrasso ,&nbsp;Antonio Esau Del Rio Castillo ,&nbsp;Francesco Bonaccorso ,&nbsp;Stefania Sabella ,&nbsp;Fabio Boccuni","doi":"10.1016/j.impact.2025.100555","DOIUrl":"10.1016/j.impact.2025.100555","url":null,"abstract":"<div><div>Given the exceptional thermal, electrical, and mechanical properties of graphene, the interest is now shifting from scientific and technological application to industrial deployment, testified by the significant increase in demand for graphene-based products. Consequently, it is paramount that occupational safety and health (OSH) research now places utmost importance on ensuring the well-being of workers at every stage of graphene production. The present study evaluates workers' exposure potential during the production cycle of few-layer graphene (FLG) by liquid-phase exfoliation, incorporating the Prevention-through-Design approach in the transition from the laboratory scale to the pilot plant production. A measurement campaign was conducted according to the multi-metric approach proposed by the Organization for Economic Cooperation and Development and European Committee for Standardization guidelines. Multi-metric real-time instruments were used to determine particle number concentration (PNC), particle size distribution and lung deposited surface area (LDSA) along with time-integrated instrumentation to collect airborne ultrafine dust for off-line gravimetric analysis and chemical and morphological characterization. The obtained data indicate that the FLG powders storage, including the cleaning of equipment and surfaces, is the most critical step for exposed workers, with higher levels of PNC and LDSA compared to the other production phases. Recommendations for OSH risk mitigation strategies in the scaling up of the FLG production process have been proposed according to OSH principles for nano and advanced materials development. In particular, production and storage of FLG in liquid suspension or bound to a solid matrix should be preferred rather than in powder form. When not possible, a closed system with local exhaust ventilation is recommended. Finally, if the particles transport towards other areas of the plant is not properly mitigated, the sole use of personal protective equipment during the powder handling phases will be not sufficient for protecting workers from the potential exposure.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"38 ","pages":"Article 100555"},"PeriodicalIF":4.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dispersion method does not affect the in vitro genotoxicity of multi-walled carbon nanotubes despite inducing surface alterations 分散方法不影响多壁碳纳米管的体外遗传毒性,尽管引起表面改变。
IF 4.7 3区 环境科学与生态学
NanoImpact Pub Date : 2025-01-01 DOI: 10.1016/j.impact.2024.100539
Michael J. Burgum , Víctor Alcolea-Rodríguez , Hanna Saarelainen , Raquel Portela , Julián J. Reinosa , José F. Fernández , Verónica I. Dumit , Julia Catalán , Felice C. Simeone , Lara Faccani , Martin J.D. Clift , Stephen J. Evans , Miguel A. Bañares , Shareen H. Doak
{"title":"The dispersion method does not affect the in vitro genotoxicity of multi-walled carbon nanotubes despite inducing surface alterations","authors":"Michael J. Burgum ,&nbsp;Víctor Alcolea-Rodríguez ,&nbsp;Hanna Saarelainen ,&nbsp;Raquel Portela ,&nbsp;Julián J. Reinosa ,&nbsp;José F. Fernández ,&nbsp;Verónica I. Dumit ,&nbsp;Julia Catalán ,&nbsp;Felice C. Simeone ,&nbsp;Lara Faccani ,&nbsp;Martin J.D. Clift ,&nbsp;Stephen J. Evans ,&nbsp;Miguel A. Bañares ,&nbsp;Shareen H. Doak","doi":"10.1016/j.impact.2024.100539","DOIUrl":"10.1016/j.impact.2024.100539","url":null,"abstract":"<div><div>Multi-walled carbon nanotubes (MWCNTs) are a desirable class of high aspect ratio nanomaterials (HARNs) owing to their extensive applications. Given their demand, the growing occupational and consumer exposure to these materials has warranted an extensive investigation into potential hazards they may pose towards human health. This study utilised both the <em>in vitro</em> mammalian cell gene mutation and the cytokinesis-blocked micronucleus (CBMN) assays to investigate genotoxicity in human lymphoblastoid (TK6) and 16HBE14o<sup>−</sup> human lung epithelial cells, following exposure to NM-400 and NM-401 MWCNTs for 24 h. To evaluate the potential for secondary genotoxicity, the CBMN assay was applied on a co-culture of 16HBE14o<sup>−</sup> with differentiated human monocytic (dTHP-1) cells. In addition, two dispersion methods (NanoGenoTox <em>vs.</em> high shear mixing) were utilised prior to exposures and in acellular experiments to assess the effects on MWCNT oxidative potential, aspect ratio and surface properties. These were characterized <em>in chemico</em> as well as by electron microscopy and Raman spectroscopy. Structural damage of NM-400 was observed following both dispersion approaches; Raman spectra highlighted greater oxidative transformation under probe sonication as opposed to high shear mixing. Despite the changes to the oxidative potential of the MWCNTs, no statistically significant genotoxicity was observed under the conditions applied. There was also no visible signs of cellular internaliation of NM-400 or NM-401 into either cell type under the test conditions, which may support the negative genotoxic response. Whilst these HARNs may have oxidative potential, cells have natural protective mechanisms for repairing transient DNA damage. Therefore, it is crucial to evaluate biological endpoints which measure fixed DNA damage to account for the impact of DNA repair mechanisms.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100539"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoplastics in focus: Exploring interdisciplinary approaches and future directions 纳米塑料聚焦:探索跨学科方法和未来方向。
IF 4.7 3区 环境科学与生态学
NanoImpact Pub Date : 2025-01-01 DOI: 10.1016/j.impact.2025.100544
Julien Gigault , Mélanie Davranche
{"title":"Nanoplastics in focus: Exploring interdisciplinary approaches and future directions","authors":"Julien Gigault ,&nbsp;Mélanie Davranche","doi":"10.1016/j.impact.2025.100544","DOIUrl":"10.1016/j.impact.2025.100544","url":null,"abstract":"<div><div>Nanoplastics (NPs) are gaining increasing attention due to their widespread distribution and potential environmental and biological impacts. Spanning a variety of ecosystems – from soils and rivers to oceans and polar ice – NPs interact with complex biological and geochemical processes, posing risks to organisms across multiple trophic levels. Despite their growing presence, understanding the behavior, transport, and toxicity of nanoplastics remains challenging due to their diverse physical and chemical properties as well as the heterogeneity of environmental matrices. Currently, nanoplastics are often studied alongside microplastics as a single, homogeneous group, which obscures the nuanced behavior of NPs, particularly in terms of their colloidal properties and interactions within ecosystems. This perspective aims to highlight the critical gaps in nanoplastics research, stressing the importance for field studies and advanced detection/quantification methods to better capture their behavior across environmental interfaces. We advocate for a more integrated approach that account for the dynamic interactions between nanoplastics and surrounding biological, chemical, and physical environments, especially across key ecological gradients. Furthermore, long-term and transgenerational studies are essential to assess the chronic impacts of low-concentration nanoplastics exposure. Innovative and appropriate methodologies are needed to explore NP fate, transport, and toxicity in realistic environmental conditions. By combining advanced experimental tools, field studies, and ecological modeling frameworks, this paper outlines provides a roadmap for advancing our understanding of nanoplastics and their broader ecological impacts, ultimately shaping more effective environmental monitoring and mitigation strategies.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100544"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Titanium dioxide nanoparticles - physicochemical characterization and cytotoxic risk 二氧化钛纳米颗粒。物理化学特性和细胞毒性风险。
IF 4.7 3区 环境科学与生态学
NanoImpact Pub Date : 2025-01-01 DOI: 10.1016/j.impact.2025.100543
Filip Kunc , Xiaomei Du , Andre Zborowski , Linda J. Johnston , David C. Kennedy
{"title":"Titanium dioxide nanoparticles - physicochemical characterization and cytotoxic risk","authors":"Filip Kunc ,&nbsp;Xiaomei Du ,&nbsp;Andre Zborowski ,&nbsp;Linda J. Johnston ,&nbsp;David C. Kennedy","doi":"10.1016/j.impact.2025.100543","DOIUrl":"10.1016/j.impact.2025.100543","url":null,"abstract":"<div><div>Titanium dioxide (TiO<sub>2</sub>) nanoparticles (NPs) are incorporated into numerous consumer products yet data as to potential adverse health effects remains inconclusive. In this paper we physically characterize 16 nanoforms of TiO<sub>2</sub> from different manufacturers of different size, crystalline structure and surface chemistry. Physical measurements of the particles were performed and compared with those provided by manufacturers revealing several discrepancies. We then examined the biological effects of these particles in cell culture in 3 commonly used cell lines for testing materials. We were unable to validate that anatase particles are more cytotoxic than rutile particles as has been reported, and generally found that the particles produced few effects and no significant production of reactive oxygen species under the conditions used. While some particles do exhibit a dose dependent cytotoxicity that increases over time in some cell lines, the effects were not consistent between cell lines and do not appear to be linked to crystalline structure or any of the specific physical characteristics that were measured including, size, charge and surface composition, nor a correlation with the production of reactive oxygen species.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100543"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143040298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of carbon chain length and concentration of perfluorinated compounds on polytetrafluoroethylene microplastics transport behavior 碳链长度和全氟化合物浓度对聚四氟乙烯微塑料输运行为的影响
IF 4.7 3区 环境科学与生态学
NanoImpact Pub Date : 2025-01-01 DOI: 10.1016/j.impact.2025.100550
Shihao Zhao , Ruihao Xu , Xiangying Liu , Yifan Wang , Yanji Jiang
{"title":"Effect of carbon chain length and concentration of perfluorinated compounds on polytetrafluoroethylene microplastics transport behavior","authors":"Shihao Zhao ,&nbsp;Ruihao Xu ,&nbsp;Xiangying Liu ,&nbsp;Yifan Wang ,&nbsp;Yanji Jiang","doi":"10.1016/j.impact.2025.100550","DOIUrl":"10.1016/j.impact.2025.100550","url":null,"abstract":"<div><div>Perfluorooctanoic acid (PFOA) and perfluoropentanoic acid (PFPeA), as important components of perfluorinated compounds (PFAS), are not only ecologically hazardous, but also have surfactant properties that can alter the transport behavior of polytetrafluoroethylene (PTFE) in porous media. In this experiment, the effect of PFAS on the transport of PTFE in porous media under different pH, ionic strength (IS) and ion valence states was studied. The results showed that the recovery rate of PTFE decreased gradually with the decrease of pH and the increase of IS and ion valence states. When the above conditions change, the double electron layer on the microplastic surface is compressed, the absolute value of zeta potential decreases, the repulsion between each other decreases, and aggregation and deposition are more likely. In addition, it was found that the recovery rate of PTFE co-transported with long chain PFOA was higher than that of short chain PFPeA. This phenomenon may be caused by the adhesion ability of PFOA with long carbon chain on the surface of PTFE is greater than that of PFPeA with short carbon chain. On the other hand, PFAS with different carbon chain lengths produce different spatial site resistance effects after binding with particles, and the spatial site resistance produced by the long-chain PFOA is larger than that of the short-chain PFPeA, leading to a decrease in particle-to-particle aggregation and a better transport effect. This study will help to understand the effects of PFAS with different carbon chain lengths on the transport of microplastics in porous media, as well as the transport rule of PTFE under different conditions, and provide reference value for the calculation of its flux in soil.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100550"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143488925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of polyglycolic acid and analogues on glycolipid metabolism and circadian behavior in zebrafish 聚乙醇酸及其类似物对斑马鱼糖脂代谢和昼夜行为的影响。
IF 4.7 3区 环境科学与生态学
NanoImpact Pub Date : 2025-01-01 DOI: 10.1016/j.impact.2025.100546
Liang Wen , Shuhui Zhang , Jialu Luan , Tian Yin , Xizeng Feng
{"title":"Impacts of polyglycolic acid and analogues on glycolipid metabolism and circadian behavior in zebrafish","authors":"Liang Wen ,&nbsp;Shuhui Zhang ,&nbsp;Jialu Luan ,&nbsp;Tian Yin ,&nbsp;Xizeng Feng","doi":"10.1016/j.impact.2025.100546","DOIUrl":"10.1016/j.impact.2025.100546","url":null,"abstract":"<div><div>For the past few years, new biodegradable polymers, such as polyglycolic acid (PGA) and polylactic acid (PLA), have been promising materials to solve the remarkable environmental issue, of microplastics (MPs) pollution. In this research, the impacts of five MPs, including PGA, PLA, polybutylene succinate (PBS), polyhydroxyalkanoate (PHA), and polybutylene adipate terephthalate (PBAT), were analyzed on zebrafish with different concentrations. We found that PGA and PLA at 1 mg/L did not have obvious effects on liver function, glucose level, and circadian rhythm in larvae. However, Exposure to PBS, PHA, and PBAT at 1 mg/L could cause mild pathological injury of the liver and decreased glucose levels. Furthermore, exposure to PBS, PHA, and PBAT at 100 mg/L caused abnormal early development and pathological injury of the liver, increased ALT and TG levels, as well as decreased glucose levels. The molecular explanation of this was the variational expression levels of genes related to many aspects of biochemical pathways, such as oxidative stress, apoptosis, endoplasmic reticulum stress, fatty acid oxidation, and glucose metabolism. Meanwhile, larvae exposed to PBS, PHA, and PBAT at 100 mg/L showed chaos in circadian behaviors, accompanied by the disturbed expression of clock genes. Overall, we observed a greater adverse effect of PBS, PHA, and PBAT relative to PLA and PGA when we compared the effects induced by five MPs at the same exposure concentration. Our study provided important data to evaluate the ecological risk of new biodegradable polymers.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100546"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting the dissolution of metal-based nanoparticles by means of QSPRs and the effect of data augmentation 利用QSPRs预测金属基纳米颗粒的溶解及数据增强效应
IF 4.7 3区 环境科学与生态学
NanoImpact Pub Date : 2025-01-01 DOI: 10.1016/j.impact.2025.100547
Yuchao Song , Surendra Balraadjsing , Willie J.G.M. Peijnenburg , Martina G. Vijver
{"title":"Predicting the dissolution of metal-based nanoparticles by means of QSPRs and the effect of data augmentation","authors":"Yuchao Song ,&nbsp;Surendra Balraadjsing ,&nbsp;Willie J.G.M. Peijnenburg ,&nbsp;Martina G. Vijver","doi":"10.1016/j.impact.2025.100547","DOIUrl":"10.1016/j.impact.2025.100547","url":null,"abstract":"<div><div>Particle dissolution is a critical process in the environmental fate assessment of metal-based nanoparticles (MNPs). Numerous attempts have been made previously to adequately quantify dissolution (kinetics), however, existing dissolution data and models are generally limited to a few nanomaterials or specific time points. Hence, they only capture phases of the process. This study aimed to develop a Quantitative Structure-Property Relationship (QSPR) model to predict the ion release (in %) of MNPs for different time points and water chemistry conditions. Furthermore, many machine learning models are frequently plagued by a lack of data and recently data augmentation has been suggested as a method to mitigate this issue. Therefore, we also investigated the effects of data augmentation on QSPRs. Following data collection from literature, QSPR models were generated and results indicate models with adequate performance (R<sup>2</sup> &gt; 0.7). Results also demonstrated significant improvements in model performance with increasing amounts of applied data augmentation. However, a deeper evaluation of the results also highlighted that data augmentation can lead to misleading and overoptimistic model evaluation. Thus, proper model assessment is necessary when evaluating QSPRs. Variable importance analysis results revealed that the “initial concentration” and features related to the size and shape of MNPs were the most critical factors in the dissolution process. The predictive models generated here for MNP dissolution can improve nanomaterial testing efficiency and guide experimental design.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100547"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-sized polystyrene plastics toxicity: Necroptosis pathway caused by autophagy blockade and lysosomal dysfunction 纳米聚苯乙烯塑料毒性:自噬阻断和溶酶体功能障碍引起的坏死坏死途径。
IF 4.7 3区 环境科学与生态学
NanoImpact Pub Date : 2025-01-01 DOI: 10.1016/j.impact.2024.100537
Haiyan Wu , Runqiu Cai , Chaoyu Zhou , Yifei Yang , Xinyuan Tian , Zhongling Zhao , Qianyu Bai , Xuejiao Qiu , Qingyi Song , Lei Zhang , Huihui Bao , Tianlong Liu
{"title":"Nano-sized polystyrene plastics toxicity: Necroptosis pathway caused by autophagy blockade and lysosomal dysfunction","authors":"Haiyan Wu ,&nbsp;Runqiu Cai ,&nbsp;Chaoyu Zhou ,&nbsp;Yifei Yang ,&nbsp;Xinyuan Tian ,&nbsp;Zhongling Zhao ,&nbsp;Qianyu Bai ,&nbsp;Xuejiao Qiu ,&nbsp;Qingyi Song ,&nbsp;Lei Zhang ,&nbsp;Huihui Bao ,&nbsp;Tianlong Liu","doi":"10.1016/j.impact.2024.100537","DOIUrl":"10.1016/j.impact.2024.100537","url":null,"abstract":"<div><div>The persistent detection of nano-sized plastic particles in humans, animals, and animal-derived products underscores the potential impact of these particles on living organisms. Consequently, the toxicology of such particles has emerged as a pivotal research interests in recent years. In this study, NP was synthesized successfully with an average particle size of 100 nm using a emulsion polymerization method as model particles. Following co-incubation of IEC-6 cells with NP for 24–168 h, a notable inhibition of cell viability and proliferation was observed. The significant activation of autophagy and a concomitant blockage of autophagic flux in IEC-6 cells after 24–72 h of co-incubation with NP were unveiled by transmission electron microscopy, western blotting, and double-fluorescent autophagy analysis. A significant increase in the number of lysosomes and an increase in the expression of hydrolase CTSB were detected, indicating dysregulation of lysosomal function. The subsequent transcriptomic and metabolomics analyses, coupled with the observation of activated lysosomes and the RIPK1-RIPK3-MLKL/PYGL pathway, led us to posit that the blockade of autophagy and lysosomal dysfunction, culminating in lysosomal membrane permeabilization (LMP) induced necroptosis, constitutes one of the mechanisms contributing to the cytotoxicity of NP.</div></div><div><h3>Synopsis</h3><div>The cytotoxicity and its related mechanisms of nano-plastic is still unclear. This study found that nano-plastics may induce necroptosis in cells, and autophagy blockade and lysosomal dysfunction are prodromal manifestations.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100537"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The risk of short-term microplastic exposure on female reproductive function: A rat model study 短期微塑料暴露对雌性生殖功能的影响:大鼠模型研究。
IF 4.7 3区 环境科学与生态学
NanoImpact Pub Date : 2025-01-01 DOI: 10.1016/j.impact.2025.100545
Zihan Wang , Ruiqing Zhang , Yuanzhen Zhang , Yao Xiong , Ming Zhang
{"title":"The risk of short-term microplastic exposure on female reproductive function: A rat model study","authors":"Zihan Wang ,&nbsp;Ruiqing Zhang ,&nbsp;Yuanzhen Zhang ,&nbsp;Yao Xiong ,&nbsp;Ming Zhang","doi":"10.1016/j.impact.2025.100545","DOIUrl":"10.1016/j.impact.2025.100545","url":null,"abstract":"<div><div>Long-term effects of microplastics (MPs) exposure have been demonstrated to impair reproductive function. However, in real world, the exposure level of MP is not constant and it may vary in different individuals. This study aims to evaluate the impact of short-term exposure to MPs on ovarian and endometrial function in rat models. Serum steroid hormone concentrations and the expression of ovarian steroid hormone receptor were disturbed. We found that as MPs exposure concentration increased, thickness of the endometrial glandular epithelial layer and the number of endometrial glands decreased; the number of primordial follicles decreased, while the numbers of primary and secondary oocytes significantly increased, indicating a potential oocyte overactivation. Although short-term MP exposure appears to not influence embryo implantation and hormone functions, the results of this study highlight the potential of MPs to disrupt reproductive health in women.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100545"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143040296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信