Impacts of polyglycolic acid and analogues on glycolipid metabolism and circadian behavior in zebrafish

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Liang Wen , Shuhui Zhang , Jialu Luan , Tian Yin , Xizeng Feng
{"title":"Impacts of polyglycolic acid and analogues on glycolipid metabolism and circadian behavior in zebrafish","authors":"Liang Wen ,&nbsp;Shuhui Zhang ,&nbsp;Jialu Luan ,&nbsp;Tian Yin ,&nbsp;Xizeng Feng","doi":"10.1016/j.impact.2025.100546","DOIUrl":null,"url":null,"abstract":"<div><div>For the past few years, new biodegradable polymers, such as polyglycolic acid (PGA) and polylactic acid (PLA), have been promising materials to solve the remarkable environmental issue, of microplastics (MPs) pollution. In this research, the impacts of five MPs, including PGA, PLA, polybutylene succinate (PBS), polyhydroxyalkanoate (PHA), and polybutylene adipate terephthalate (PBAT), were analyzed on zebrafish with different concentrations. We found that PGA and PLA at 1 mg/L did not have obvious effects on liver function, glucose level, and circadian rhythm in larvae. However, Exposure to PBS, PHA, and PBAT at 1 mg/L could cause mild pathological injury of the liver and decreased glucose levels. Furthermore, exposure to PBS, PHA, and PBAT at 100 mg/L caused abnormal early development and pathological injury of the liver, increased ALT and TG levels, as well as decreased glucose levels. The molecular explanation of this was the variational expression levels of genes related to many aspects of biochemical pathways, such as oxidative stress, apoptosis, endoplasmic reticulum stress, fatty acid oxidation, and glucose metabolism. Meanwhile, larvae exposed to PBS, PHA, and PBAT at 100 mg/L showed chaos in circadian behaviors, accompanied by the disturbed expression of clock genes. Overall, we observed a greater adverse effect of PBS, PHA, and PBAT relative to PLA and PGA when we compared the effects induced by five MPs at the same exposure concentration. Our study provided important data to evaluate the ecological risk of new biodegradable polymers.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100546"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074825000060","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

For the past few years, new biodegradable polymers, such as polyglycolic acid (PGA) and polylactic acid (PLA), have been promising materials to solve the remarkable environmental issue, of microplastics (MPs) pollution. In this research, the impacts of five MPs, including PGA, PLA, polybutylene succinate (PBS), polyhydroxyalkanoate (PHA), and polybutylene adipate terephthalate (PBAT), were analyzed on zebrafish with different concentrations. We found that PGA and PLA at 1 mg/L did not have obvious effects on liver function, glucose level, and circadian rhythm in larvae. However, Exposure to PBS, PHA, and PBAT at 1 mg/L could cause mild pathological injury of the liver and decreased glucose levels. Furthermore, exposure to PBS, PHA, and PBAT at 100 mg/L caused abnormal early development and pathological injury of the liver, increased ALT and TG levels, as well as decreased glucose levels. The molecular explanation of this was the variational expression levels of genes related to many aspects of biochemical pathways, such as oxidative stress, apoptosis, endoplasmic reticulum stress, fatty acid oxidation, and glucose metabolism. Meanwhile, larvae exposed to PBS, PHA, and PBAT at 100 mg/L showed chaos in circadian behaviors, accompanied by the disturbed expression of clock genes. Overall, we observed a greater adverse effect of PBS, PHA, and PBAT relative to PLA and PGA when we compared the effects induced by five MPs at the same exposure concentration. Our study provided important data to evaluate the ecological risk of new biodegradable polymers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
NanoImpact
NanoImpact Social Sciences-Safety Research
CiteScore
11.00
自引率
6.10%
发文量
69
审稿时长
23 days
期刊介绍: NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.
文献相关原料
公司名称
产品信息
索莱宝
phosphate-buffered saline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信