Interactions between polystyrene nanoparticles and human intestinal epithelial Caco-2 cells

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yuan-Yuan Liu, Jie Liu, Yuan Guo, Qiangqiang Zhang, Aoneng Cao, Haifang Wang
{"title":"Interactions between polystyrene nanoparticles and human intestinal epithelial Caco-2 cells","authors":"Yuan-Yuan Liu,&nbsp;Jie Liu,&nbsp;Yuan Guo,&nbsp;Qiangqiang Zhang,&nbsp;Aoneng Cao,&nbsp;Haifang Wang","doi":"10.1016/j.impact.2025.100559","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoplastics enter the human body mainly by ingestion through the gastrointestinal tract and thus the uptake and release of nanoplastics in intestinal cells have been studied. However, the fate of nanoplastics in intestinal cells remains poorly understood, particularly how they are exocytosed. Herein, we investigated the uptake, distribution, and exocytosis of nanoplastics in Caco-2 cells using 70 nm red fluorescent polystyrene (R70PS) as a nanoplastic model. The results show that R70PS readily enters Caco-2 cells and the content per cell peaks at around 24 h, but the total intracellular content in all cells increases continuously over 72 h. In addition, the uptake mechanisms change over incubation time, i.e. R70PS entered Caco-2 cells via both the energy-independent pathway and the energy-dependent caveolae-mediated endocytosis and macropinocytosis at 4 h incubation, but almost all R70PS entered cells in an energy-dependent manner via caveolae-mediated endocytosis, macropinocytosis, and clathrin-mediated endocytosis at 12 h incubation. Most of the intracellular R70PS accumulated in lysosomes, but R70PS also entered the mitochondria and its level increased over time. Approximately 45 % of the intracellular R70PS could be cleared from the cells within 12 h, mainly via the lysosomal pathway. Exocytosis was also associated with autophagy and was facilitated by the increase in the number of mitochondria and lysosomes, but inhibited by serum in the medium. Our findings deepen the understanding of the interaction between nanoplastics and intestinal cells, which is helpful for the risk assessment of nanoplastics.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"38 ","pages":"Article 100559"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074825000199","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoplastics enter the human body mainly by ingestion through the gastrointestinal tract and thus the uptake and release of nanoplastics in intestinal cells have been studied. However, the fate of nanoplastics in intestinal cells remains poorly understood, particularly how they are exocytosed. Herein, we investigated the uptake, distribution, and exocytosis of nanoplastics in Caco-2 cells using 70 nm red fluorescent polystyrene (R70PS) as a nanoplastic model. The results show that R70PS readily enters Caco-2 cells and the content per cell peaks at around 24 h, but the total intracellular content in all cells increases continuously over 72 h. In addition, the uptake mechanisms change over incubation time, i.e. R70PS entered Caco-2 cells via both the energy-independent pathway and the energy-dependent caveolae-mediated endocytosis and macropinocytosis at 4 h incubation, but almost all R70PS entered cells in an energy-dependent manner via caveolae-mediated endocytosis, macropinocytosis, and clathrin-mediated endocytosis at 12 h incubation. Most of the intracellular R70PS accumulated in lysosomes, but R70PS also entered the mitochondria and its level increased over time. Approximately 45 % of the intracellular R70PS could be cleared from the cells within 12 h, mainly via the lysosomal pathway. Exocytosis was also associated with autophagy and was facilitated by the increase in the number of mitochondria and lysosomes, but inhibited by serum in the medium. Our findings deepen the understanding of the interaction between nanoplastics and intestinal cells, which is helpful for the risk assessment of nanoplastics.
聚苯乙烯纳米颗粒与人肠道上皮细胞 Caco-2 之间的相互作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NanoImpact
NanoImpact Social Sciences-Safety Research
CiteScore
11.00
自引率
6.10%
发文量
69
审稿时长
23 days
期刊介绍: NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信