Nature AstronomyPub Date : 2025-05-20DOI: 10.1038/s41550-025-02557-z
P. Beck, E. Quirico, O. Poch, B. Schmitt
{"title":"On the darkness of Ryugu and other dark small bodies","authors":"P. Beck, E. Quirico, O. Poch, B. Schmitt","doi":"10.1038/s41550-025-02557-z","DOIUrl":"https://doi.org/10.1038/s41550-025-02557-z","url":null,"abstract":"<p><span>arising from</span>: C. Potiszil et al. <i>Nature Astronomy</i> https://doi.org/10.1038/s41550-024-02372-y (2024)</p><p>As observed by the Hayabusa2 spacecraft, the surface of the asteroid Ryugu is extremely dark, which led Potiszil et al. to predict a very high organic content (14.9–59.3 vol% C)<sup>1</sup>. This prediction was shown to be largely overestimated by analysed returned samples, and this discrepancy is explained by Potiszil et al. in ref. <sup>2</sup> by textural and photometric effects, as well as space weathering on organic matter. Rather, we argue that mineralogy plays a key role in the optical properties, and that an approach where ‘albedo’ is a linear function of organic content does not account for the nonlinearity of radiative transfer in complex media. More specifically, fine-grained Fe-bearing opaques are likely important darkening agents of primitive small bodies, cometary dust and possibly interstellar grains.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"32 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144097657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature AstronomyPub Date : 2025-05-14DOI: 10.1038/s41550-025-02537-3
Conor A. Nixon, Bruno Bézard, Thomas Cornet, Brandon Park Coy, Imke de Pater, Maël Es-Sayeh, Heidi B. Hammel, Emmanuel Lellouch, Nicholas A. Lombardo, Manuel López-Puertas, Juan M. Lora, Pascal Rannou, Sébastien Rodriguez, Nicholas A. Teanby, Elizabeth P. Turtle, Richard K. Achterberg, Carlos Alvarez, Ashley G. Davies, Katherine de Kleer, Greg Doppmann, Leigh N. Fletcher, Alexander G. Hayes, Bryan J. Holler, Patrick G. J. Irwin, Carolyn Jordan, Oliver R. T. King, Nicholas W. Kutsop, Theresa C. Marlin, Henrik Melin, Stefanie N. Milam, Edward M. Molter, Luke Moore, Yaniss Nyffenegger-Péré, James O’Donoghue, John O’Meara, Scot C. R. Rafkin, Michael T. Roman, Arina Rostopchina, Naomi Rowe-Gurney, Carl Schmidt, Judy Schmidt, Christophe Sotin, Tom S. Stallard, John A. Stansberry, Robert A. West
{"title":"The atmosphere of Titan in late northern summer from JWST and Keck observations","authors":"Conor A. Nixon, Bruno Bézard, Thomas Cornet, Brandon Park Coy, Imke de Pater, Maël Es-Sayeh, Heidi B. Hammel, Emmanuel Lellouch, Nicholas A. Lombardo, Manuel López-Puertas, Juan M. Lora, Pascal Rannou, Sébastien Rodriguez, Nicholas A. Teanby, Elizabeth P. Turtle, Richard K. Achterberg, Carlos Alvarez, Ashley G. Davies, Katherine de Kleer, Greg Doppmann, Leigh N. Fletcher, Alexander G. Hayes, Bryan J. Holler, Patrick G. J. Irwin, Carolyn Jordan, Oliver R. T. King, Nicholas W. Kutsop, Theresa C. Marlin, Henrik Melin, Stefanie N. Milam, Edward M. Molter, Luke Moore, Yaniss Nyffenegger-Péré, James O’Donoghue, John O’Meara, Scot C. R. Rafkin, Michael T. Roman, Arina Rostopchina, Naomi Rowe-Gurney, Carl Schmidt, Judy Schmidt, Christophe Sotin, Tom S. Stallard, John A. Stansberry, Robert A. West","doi":"10.1038/s41550-025-02537-3","DOIUrl":"https://doi.org/10.1038/s41550-025-02537-3","url":null,"abstract":"<p>Saturn’s moon Titan undergoes a long annual cycle of 29.45 Earth years. Titan’s northern winter and spring were investigated in detail by the Cassini–Huygens spacecraft (2004–2017), but the northern summer season remains sparsely studied. Here we present new observations from the James Webb Space Telescope (JWST) and Keck II telescope made in 2022 and 2023 during Titan’s late northern summer. Using JWST’s mid-infrared instrument, we spectroscopically detected the methyl radical, the primary product of methane break-up and key to the formation of ethane and heavier molecules. Using the near-infrared spectrograph onboard JWST, we detected several non-local thermodynamic equilibrium CO and CO<sub>2</sub> emission bands, which allowed us to measure these species over a wide altitude range. Lastly, using the near-infrared camera onboard JWST and Keck II, we imaged northern hemisphere tropospheric clouds evolving in altitude, which provided new insights and constraints on seasonal convection patterns. These observations pave the way for new observations and modelling of Titan’s climate and meteorology as it progresses through the northern fall equinox, when its atmosphere is expected to show notable seasonal changes.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"81 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143945970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature AstronomyPub Date : 2025-05-13DOI: 10.1038/s41550-025-02551-5
James R. Beattie, Christoph Federrath, Ralf S. Klessen, Salvatore Cielo, Amitava Bhattacharjee
{"title":"The spectrum of magnetized turbulence in the interstellar medium","authors":"James R. Beattie, Christoph Federrath, Ralf S. Klessen, Salvatore Cielo, Amitava Bhattacharjee","doi":"10.1038/s41550-025-02551-5","DOIUrl":"https://doi.org/10.1038/s41550-025-02551-5","url":null,"abstract":"<p>The interstellar medium (ISM) of our Galaxy is magnetized, compressible and turbulent, influencing many key ISM properties, such as star formation, cosmic-ray transport, and metal and phase mixing. Yet, basic statistics describing compressible, magnetized turbulence remain uncertain. Utilizing grid resolutions up to 10,080<sup>3</sup> cells, we simulated highly compressible, magnetized ISM-style turbulence with a magnetic field maintained by a small-scale dynamo. We measured two coexisting kinetic energy cascades, <span>({{mathcal{E}}}_{{rm{kin}}}(k)propto {k}^{-n})</span>, in the turbulence, separating the plasma into scales that are non-locally interacting, supersonic and weakly magnetized (<i>n</i> = 2.01 ± 0.03 ≈ 2) and locally interacting, subsonic and highly magnetized (<i>n</i> = 1.465 ± 0.002 ≈ 3/2), where <i>k</i> is the wavenumber. We show that the 3/2 spectrum can be explained with scale-dependent kinetic energy fluxes and velocity–magnetic field alignment. On the highly magnetized modes, the magnetic energy spectrum forms a local cascade (<i>n</i> = 1.798 ± 0.001 ≈ 9/5), deviating from any known ab initio theory. With a new generation of radio telescopes coming online, these results provide a means to directly test if the ISM in our Galaxy is maintained by the compressible turbulent motions from within it.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"2 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143940629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature AstronomyPub Date : 2025-05-13DOI: 10.1038/s41550-025-02548-0
Erika Alden DeBenedictis, Edwin S. Kite, Robin D. Wordsworth, Nina L. Lanza, Charles S. Cockell, Pamela A. Silver, Ramses M. Ramirez, John Cumbers, Hooman Mohseni, Christopher E. Mason, Woodward W. Fischer, Christopher P. McKay
{"title":"The case for Mars terraforming research","authors":"Erika Alden DeBenedictis, Edwin S. Kite, Robin D. Wordsworth, Nina L. Lanza, Charles S. Cockell, Pamela A. Silver, Ramses M. Ramirez, John Cumbers, Hooman Mohseni, Christopher E. Mason, Woodward W. Fischer, Christopher P. McKay","doi":"10.1038/s41550-025-02548-0","DOIUrl":"https://doi.org/10.1038/s41550-025-02548-0","url":null,"abstract":"<p>Terraforming Mars has long captured the imagination but has received surprisingly little rigorous study. Progress in Mars science, climate science, launch capabilities and bioscience motivates a fresh look at Mars terraforming research. Since Sagan’s time, it has been understood that terraforming Mars would involve warming to enable oxygenic photosynthesis by engineered microbes, followed by slow oxygen build-up enabling more complex life. Before we can assess whether warming Mars is worthwhile, relative to the alternative of leaving Mars as a pristine wilderness, we must confront the practical requirements, cost and possible risks. Here we discuss what we know about Mars’s volatile inventories and soil composition, and possible approaches to warm Mars and increase atmospheric O<sub>2</sub>. New techniques have emerged that could raise Mars’s average global temperature by tens of degrees within a few decades. Research priorities include focusing on understanding fundamental physical, chemical and biological constraints that will shape any future decisions about Mars. Such research would drive advances in Mars exploration, bioscience and climate modelling.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"108 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143940627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature AstronomyPub Date : 2025-05-02DOI: 10.1038/s41550-025-02555-1
Marie Běhounková
{"title":"Europa’s silent seafloor","authors":"Marie Běhounková","doi":"10.1038/s41550-025-02555-1","DOIUrl":"https://doi.org/10.1038/s41550-025-02555-1","url":null,"abstract":"Europa is regarded as a primary candidate for a habitable world beyond Earth, with seafloor volcanism being one potential source of the energy and chemicals needed to support life. However, a new numerical model offers a different perspective.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"56 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143898086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"National forum of planetary science for early-career scientists in China","authors":"Jihua Hao, Yu Liu, Jinting Kang, Tong Dang, Bingkun Yu, Huihong Cheng, Yuming Wang","doi":"10.1038/s41550-025-02554-2","DOIUrl":"https://doi.org/10.1038/s41550-025-02554-2","url":null,"abstract":"Planetary science is a rapidly growing research field in China. In March 2025, many hundreds of early-career planetary scientists gathered in Huangshan, China, to exchange the latest findings on this topic.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"18 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143898047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature AstronomyPub Date : 2025-04-28DOI: 10.1038/s41550-025-02536-4
{"title":"Quasi-periodic eruptions from a newly active black hole","authors":"","doi":"10.1038/s41550-025-02536-4","DOIUrl":"https://doi.org/10.1038/s41550-025-02536-4","url":null,"abstract":"A galactic nucleus began emitting X-rays, periodically, in 2024. These quasi-periodic eruptions have the highest fluxes and longest timescales of any detected so far, and are thought to originate from newly formed accretion flows onto a supermassive black hole.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"80 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Age dependence of the occurrence and architecture of ultra-short-period planet systems","authors":"Pei-Wei Tu, Ji-Wei Xie, Di-Chang Chen, Ji-Lin Zhou","doi":"10.1038/s41550-025-02539-1","DOIUrl":"https://doi.org/10.1038/s41550-025-02539-1","url":null,"abstract":"<p>Ultra-short-period (USP) planets, with orbital periods shorter than 1 day, represent a unique class of exoplanets whose origin remains puzzling. Determining their age distribution and temporal evolution is vital for uncovering their formation and evolutionary pathways. Using a sample of over 1,000 short-period planets around Sun-like stars, we found that the host stars of USP planets are relatively older and have a higher prevalence in the Galactic thick disk compared to stars hosting other short-period planets. Furthermore, we found that the occurrence of USP planets increases with stellar age, and we uncovered evidence indicating that USP planetary system architectures evolve on gigayear timescales. This includes a distinct dip/pile-up in period distributions around ~1 day and an expansion of orbital spacings with time. In addition, younger USP planet systems are observed to have fewer transiting planets, implying fewer nearby companions or larger mutual orbital inclinations. Our findings indicate that USP planets continuously form through inward migration driven by tidal dissipation over gigayear timescales, and that younger and older USP planets may have originated via different specific tidal migration pathways.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"132 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature AstronomyPub Date : 2025-04-28DOI: 10.1038/s41550-025-02541-7
Blakesley Burkhart, Thavisha E. Dharmawardena, Shmuel Bialy, Thomas J. Haworth, Fernando Cruz Aguirre, Young-Soo Jo, B-G Andersson, Haeun Chung, Jerry Edelstein, Isabelle Grenier, Erika T. Hamden, Wonyong Han, Keri Hoadley, Min-Young Lee, Kyoung-Wook Min, Thomas Müller, Kate Pattle, J. E. G. Peek, Geoff Pleiss, David Schiminovich, Kwang-Il Seon, Andrew Gordon Wilson, Catherine Zucker
{"title":"A nearby dark molecular cloud in the Local Bubble revealed via H2 fluorescence","authors":"Blakesley Burkhart, Thavisha E. Dharmawardena, Shmuel Bialy, Thomas J. Haworth, Fernando Cruz Aguirre, Young-Soo Jo, B-G Andersson, Haeun Chung, Jerry Edelstein, Isabelle Grenier, Erika T. Hamden, Wonyong Han, Keri Hoadley, Min-Young Lee, Kyoung-Wook Min, Thomas Müller, Kate Pattle, J. E. G. Peek, Geoff Pleiss, David Schiminovich, Kwang-Il Seon, Andrew Gordon Wilson, Catherine Zucker","doi":"10.1038/s41550-025-02541-7","DOIUrl":"https://doi.org/10.1038/s41550-025-02541-7","url":null,"abstract":"<p>A longstanding prediction in interstellar theory posits that significant quantities of molecular gas, crucial for star formation, may be undetected due to being ’dark’ in commonly used molecular gas tracers, such as carbon monoxide. We report the discovery of Eos, a dark molecular cloud located just 94 pc from the Sun. This cloud is identified using H<sub>2</sub> far-ultraviolet fluorescent line emission, which traces molecular gas at the boundary layers of star-forming and supernova remnant regions. The cloud edge is outlined along the high-latitude side of the North Polar Spur, a prominent X-ray/radio structure. Our distance estimate utilizes three-dimensional dust maps, the absorption of the soft-X-ray background, and hot gas tracers such as O <span>vi</span>; these place the cloud at a distance consistent with the Local Bubble’s surface. Using high-latitude CO maps we note a small amount (<span>(M_{{{rm{H}}}_{2}}approx 20text{--}40,M_{odot })</span>) of CO-bright cold molecular gas, in contrast with the much larger estimate of the cloud’s true molecular mass (<span>(M_{{{rm{H}}}_{2}}approx 3.4times 1{0}^{3},M_{odot })</span>), indicating that most of the cloud is CO dark. Combining observational data with novel analytical models and simulations, we predict that this cloud will photoevaporate in 5.7 Myr, placing key constraints on the role of stellar feedback in shaping the closest star-forming regions to the Sun.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"45 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature AstronomyPub Date : 2025-04-28DOI: 10.1038/s41550-025-02532-8
David Kipping, Diana Solano-Oropeza, Daniel A. Yahalomi, Madison Li, Avishi Poddar, Xunhe Zhang
{"title":"Near-circular orbits for planets with Earth-like sizes and instellations around M and K dwarf stars","authors":"David Kipping, Diana Solano-Oropeza, Daniel A. Yahalomi, Madison Li, Avishi Poddar, Xunhe Zhang","doi":"10.1038/s41550-025-02532-8","DOIUrl":"https://doi.org/10.1038/s41550-025-02532-8","url":null,"abstract":"<p>Recent advances have enabled the discovery of a population of potentially Earth-like planets; however, their orbital eccentricity, which governs their climate and provides clues about their origin and dynamical history, is still largely unconstrained. Here we identify a sample of 17 transiting exoplanets around late-type stars with similar radii and irradiation to that of Earth and use the ‘photoeccentric effect’—which exploits transit durations—to infer their eccentricity distribution using hierarchical Bayesian modelling. Our analysis establishes that these worlds further resemble Earth in that their eccentricities are nearly circular (mean eccentricity <span>(0.06{0}_{-0.028}^{+0.040})</span> and ≤0.15), with the exception of one outlier of moderate eccentricity. This outlier hints at a subset population of dynamically warmer Earths, but this requires a larger sample to statistically confirm. The planets in our sample are thus largely subject to minimal eccentricity-induced seasonal variability and are consistent with emerging via smooth disk migration rather than violent planet–planet scattering.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"36 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}