Priyam Das, Ivo R. Seitenzahl, Ashley J. Ruiter, Friedrich K. Röpke, Rüdiger Pakmor, Frédéric P. A. Vogt, Christine E. Collins, Parviz Ghavamian, Stuart A. Sim, Brian J. Williams, Stefan Taubenberger, J. Martin Laming, Janette Suherli, Ralph Sutherland, Nicolás Rodríguez-Segovia
{"title":"Calcium in a supernova remnant as a fingerprint of a sub-Chandrasekhar-mass explosion","authors":"Priyam Das, Ivo R. Seitenzahl, Ashley J. Ruiter, Friedrich K. Röpke, Rüdiger Pakmor, Frédéric P. A. Vogt, Christine E. Collins, Parviz Ghavamian, Stuart A. Sim, Brian J. Williams, Stefan Taubenberger, J. Martin Laming, Janette Suherli, Ralph Sutherland, Nicolás Rodríguez-Segovia","doi":"10.1038/s41550-025-02589-5","DOIUrl":null,"url":null,"abstract":"<p>Type Ia supernovae play a fundamental role as cosmological probes of dark energy and produce more than half of the iron in our Galaxy. Despite their central importance, a comprehensive understanding of their progenitor systems and triggering mechanism is still a long-standing fundamental problem. Here we present high-resolution integral field spectroscopic observations of the young supernova remnant SNR 0509-67.5 in the Large Magellanic Cloud. We uncover a double-shell morphology of highly ionized calcium [Ca XV] and a single shell of sulphur [S XII], observed in the reverse shocked ejecta. Our analysis reveals that the outer calcium shell originates from the helium detonation at the base of the outer envelope, while the inner shell is associated with the carbon–oxygen core detonation. This morphological distribution of intermediate-mass elements agrees qualitatively with the predicted signature of the double detonation of a sub-Chandrasekhar-mass white dwarf from a hydrodynamical explosion simulation. Our observations reveal two distinct, spatially separated peaks in surface brightness of [Ca XV] from the supernova remnant phase, providing substantial evidence that sub-Chandrasekhar-mass explosions through the double-detonation mechanism could occur in nature. They also highlight the importance of remnant tomography in understanding explosion mechanisms from the remnant phase.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"47 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02589-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Type Ia supernovae play a fundamental role as cosmological probes of dark energy and produce more than half of the iron in our Galaxy. Despite their central importance, a comprehensive understanding of their progenitor systems and triggering mechanism is still a long-standing fundamental problem. Here we present high-resolution integral field spectroscopic observations of the young supernova remnant SNR 0509-67.5 in the Large Magellanic Cloud. We uncover a double-shell morphology of highly ionized calcium [Ca XV] and a single shell of sulphur [S XII], observed in the reverse shocked ejecta. Our analysis reveals that the outer calcium shell originates from the helium detonation at the base of the outer envelope, while the inner shell is associated with the carbon–oxygen core detonation. This morphological distribution of intermediate-mass elements agrees qualitatively with the predicted signature of the double detonation of a sub-Chandrasekhar-mass white dwarf from a hydrodynamical explosion simulation. Our observations reveal two distinct, spatially separated peaks in surface brightness of [Ca XV] from the supernova remnant phase, providing substantial evidence that sub-Chandrasekhar-mass explosions through the double-detonation mechanism could occur in nature. They also highlight the importance of remnant tomography in understanding explosion mechanisms from the remnant phase.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.