{"title":"从类星体固有运动观察到的高红移宇宙的运动学畸变","authors":"Valeri Makarov","doi":"10.1038/s41550-025-02591-x","DOIUrl":null,"url":null,"abstract":"<p>Advances in optical astrometry allow us to infer the non-radial kinematic structure of the Universe directly from observations. Here I use a supervised machine learning neural network method to predict 1.57 million redshifts based on several photometric and metadata classifier parameters from the unWISE mid-infrared database and from Gaia. These estimates are used to divide the sample into three redshift bins: 1–2, 2–3 and >3. For each subset, all available Gaia proper motions are used in a global vector spherical harmonic solution to degree 3 (30 fitting vector functions). I find significant differences in a few fitted proper motion patterns at different redshifts. The largest signals are seen in the comparison of the vector spherical harmonic fits for the 1–2 and 2–3 redshift bins. The significant harmonics include a rigid spin, a dipole glide from the north Galactic pole to the south and an additional quadrupole distortion. Validation tests with filtered subsamples indicate that the detected effect can be caused by hidden systematic errors in astrometry. The results are verified by using an independent source of redshifts and computing the observer’s Galactocentric acceleration. This study offers a new observational test of alternative cosmological models.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"9 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic distortions of the high-redshift Universe as seen from quasar proper motions\",\"authors\":\"Valeri Makarov\",\"doi\":\"10.1038/s41550-025-02591-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Advances in optical astrometry allow us to infer the non-radial kinematic structure of the Universe directly from observations. Here I use a supervised machine learning neural network method to predict 1.57 million redshifts based on several photometric and metadata classifier parameters from the unWISE mid-infrared database and from Gaia. These estimates are used to divide the sample into three redshift bins: 1–2, 2–3 and >3. For each subset, all available Gaia proper motions are used in a global vector spherical harmonic solution to degree 3 (30 fitting vector functions). I find significant differences in a few fitted proper motion patterns at different redshifts. The largest signals are seen in the comparison of the vector spherical harmonic fits for the 1–2 and 2–3 redshift bins. The significant harmonics include a rigid spin, a dipole glide from the north Galactic pole to the south and an additional quadrupole distortion. Validation tests with filtered subsamples indicate that the detected effect can be caused by hidden systematic errors in astrometry. The results are verified by using an independent source of redshifts and computing the observer’s Galactocentric acceleration. This study offers a new observational test of alternative cosmological models.</p>\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41550-025-02591-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02591-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Kinematic distortions of the high-redshift Universe as seen from quasar proper motions
Advances in optical astrometry allow us to infer the non-radial kinematic structure of the Universe directly from observations. Here I use a supervised machine learning neural network method to predict 1.57 million redshifts based on several photometric and metadata classifier parameters from the unWISE mid-infrared database and from Gaia. These estimates are used to divide the sample into three redshift bins: 1–2, 2–3 and >3. For each subset, all available Gaia proper motions are used in a global vector spherical harmonic solution to degree 3 (30 fitting vector functions). I find significant differences in a few fitted proper motion patterns at different redshifts. The largest signals are seen in the comparison of the vector spherical harmonic fits for the 1–2 and 2–3 redshift bins. The significant harmonics include a rigid spin, a dipole glide from the north Galactic pole to the south and an additional quadrupole distortion. Validation tests with filtered subsamples indicate that the detected effect can be caused by hidden systematic errors in astrometry. The results are verified by using an independent source of redshifts and computing the observer’s Galactocentric acceleration. This study offers a new observational test of alternative cosmological models.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.