Molecular biology and evolution最新文献

筛选
英文 中文
Experimental Evolution in a Warming World: The Omics Era. 变暖世界中的实验进化--omics 时代。
IF 11 1区 生物学
Molecular biology and evolution Pub Date : 2024-08-02 DOI: 10.1093/molbev/msae148
Marta A Santos, Ana Carromeu-Santos, Ana S Quina, Marta A Antunes, Torsten N Kristensen, Mauro Santos, Margarida Matos, Inês Fragata, Pedro Simões
{"title":"Experimental Evolution in a Warming World: The Omics Era.","authors":"Marta A Santos, Ana Carromeu-Santos, Ana S Quina, Marta A Antunes, Torsten N Kristensen, Mauro Santos, Margarida Matos, Inês Fragata, Pedro Simões","doi":"10.1093/molbev/msae148","DOIUrl":"10.1093/molbev/msae148","url":null,"abstract":"<p><p>A comprehensive understanding of the genetic mechanisms that shape species responses to thermal variation is essential for more accurate predictions of the impacts of climate change on biodiversity. Experimental evolution with high-throughput resequencing approaches (evolve and resequence) is a highly effective tool that has been increasingly employed to elucidate the genetic basis of adaptation. The number of thermal evolve and resequence studies is rising, yet there is a dearth of efforts to integrate this new wealth of knowledge. Here, we review this literature showing how these studies have contributed to increase our understanding on the genetic basis of thermal adaptation. We identify two major trends: highly polygenic basis of thermal adaptation and general lack of consistency in candidate targets of selection between studies. These findings indicate that the adaptive responses to specific environments are rather independent. A review of the literature reveals several gaps in the existing research. Firstly, there is a paucity of studies done with organisms of diverse taxa. Secondly, there is a need to apply more dynamic and ecologically relevant thermal environments. Thirdly, there is a lack of studies that integrate genomic changes with changes in life history and behavioral traits. Addressing these issues would allow a more in-depth understanding of the relationship between genotype and phenotype. We highlight key methodological aspects that can address some of the limitations and omissions identified. These include the need for greater standardization of methodologies and the utilization of new technologies focusing on the integration of genomic and phenotypic variation in the context of thermal adaptation.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic Anatomy of Homozygous XX Females and YY Males Reveals Early Evolutionary Trajectory of Sex-determining Gene and Sex Chromosomes in Silurus Fishes. 同卵XX雌鱼和YY雄鱼的基因组解剖揭示了银鱼性别决定基因和性染色体的早期进化轨迹。
IF 11 1区 生物学
Molecular biology and evolution Pub Date : 2024-08-02 DOI: 10.1093/molbev/msae169
Tao Wang, Gaorui Gong, Zhi Li, Jun-Sheng Niu, Wen-Xuan Du, Zhong-Wei Wang, Yang Wang, Li Zhou, Xiao-Juan Zhang, Zong-Qiang Lian, Jie Mei, Jian-Fang Gui, Xi-Yin Li
{"title":"Genomic Anatomy of Homozygous XX Females and YY Males Reveals Early Evolutionary Trajectory of Sex-determining Gene and Sex Chromosomes in Silurus Fishes.","authors":"Tao Wang, Gaorui Gong, Zhi Li, Jun-Sheng Niu, Wen-Xuan Du, Zhong-Wei Wang, Yang Wang, Li Zhou, Xiao-Juan Zhang, Zong-Qiang Lian, Jie Mei, Jian-Fang Gui, Xi-Yin Li","doi":"10.1093/molbev/msae169","DOIUrl":"10.1093/molbev/msae169","url":null,"abstract":"<p><p>Sex chromosomes display remarkable diversity and variability among vertebrates. Compared with research on the X/Y and Z/W chromosomes, which have long evolutionary histories in mammals and birds, studies on the sex chromosomes at early evolutionary stages are limited. Here, we precisely assembled the genomes of homozygous XX female and YY male Lanzhou catfish (Silurus lanzhouensis) derived from an artificial gynogenetic family and a self-fertilized family, respectively. Chromosome 24 (Chr24) was identified as the sex chromosome based on resequencing data. Comparative analysis of the X and Y chromosomes showed an approximate 320 kb Y-specific region with a Y-specific duplicate of anti-Mullerian hormone type II receptor (amhr2y), which is consistent with findings in 2 other Silurus species but on different chromosomes (Chr24 of Silurus meridionalis and Chr5 of Silurus asotus). Deficiency of amhr2y resulted in male-to-female sex reversal, indicating that amhr2y plays a male-determining role in S. lanzhouensis. Phylogenetic analysis and comparative genomics revealed that the common sex-determining gene amhr2y was initially translocated to Chr24 of the Silurus ancestor along with the expansion of transposable elements. Chr24 was maintained as the sex chromosome in S. meridionalis and S. lanzhouensis, whereas a sex-determining region transition triggered sex chromosome turnover from Chr24 to Chr5 in S. asotus. Additionally, gene duplication, translocation, and degeneration were observed in the Y-specific regions of Silurus species. These findings present a clear case for the early evolutionary trajectory of sex chromosomes, including sex-determining gene origin, repeat sequence expansion, gene gathering and degeneration in sex-determining region, and sex chromosome turnover.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SegVir: Reconstruction of Complete Segmented RNA Viral Genomes from Metatranscriptomes. SegVir:从元转录组重建完整的分段 RNA 病毒基因组。
IF 11 1区 生物学
Molecular biology and evolution Pub Date : 2024-08-02 DOI: 10.1093/molbev/msae171
Xubo Tang, Jiayu Shang, Guowei Chen, Kei Hang Katie Chan, Mang Shi, Yanni Sun
{"title":"SegVir: Reconstruction of Complete Segmented RNA Viral Genomes from Metatranscriptomes.","authors":"Xubo Tang, Jiayu Shang, Guowei Chen, Kei Hang Katie Chan, Mang Shi, Yanni Sun","doi":"10.1093/molbev/msae171","DOIUrl":"10.1093/molbev/msae171","url":null,"abstract":"<p><p>Segmented RNA viruses are a complex group of RNA viruses with multisegment genomes. Reconstructing complete segmented viruses is crucial for advancing our understanding of viral diversity, evolution, and public health impact. Using metatranscriptomic data to identify known and novel segmented viruses has sped up the survey of segmented viruses in various ecosystems. However, the high genetic diversity and the difficulty in binning complete segmented genomes present significant challenges in segmented virus reconstruction. Current virus detection tools are primarily used to identify nonsegmented viral genomes. This study presents SegVir, a novel tool designed to identify segmented RNA viruses and reconstruct their complete genomes from complex metatranscriptomes. SegVir leverages both close and remote homology searches to accurately detect conserved and divergent viral segments. Additionally, we introduce a new method that can evaluate the genome completeness and conservation based on gene content. Our evaluations on simulated datasets demonstrate SegVir's superior sensitivity and precision compared to existing tools. Moreover, in experiments using real data, we identified some virus segments missing in the NCBI database, underscoring SegVir's potential to enhance viral metagenome analysis. The source code and supporting data of SegVir are available via https://github.com/HubertTang/SegVir.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene Transfer Among Viruses Substantially Contributes to Gene Gain of Giant Viruses. 病毒之间的基因转移极大地促进了巨型病毒的基因增殖。
IF 11 1区 生物学
Molecular biology and evolution Pub Date : 2024-08-02 DOI: 10.1093/molbev/msae161
Junyi Wu, Lingjie Meng, Morgan Gaïa, Hiroyuki Hikida, Yusuke Okazaki, Hisashi Endo, Hiroyuki Ogata
{"title":"Gene Transfer Among Viruses Substantially Contributes to Gene Gain of Giant Viruses.","authors":"Junyi Wu, Lingjie Meng, Morgan Gaïa, Hiroyuki Hikida, Yusuke Okazaki, Hisashi Endo, Hiroyuki Ogata","doi":"10.1093/molbev/msae161","DOIUrl":"10.1093/molbev/msae161","url":null,"abstract":"<p><p>The phylum Nucleocytoviricota comprises a diverse group of double-stranded DNA viruses that display a wide range of gene repertoires. Although these gene repertoires determine the characteristics of individual viruses, the evolutionary processes that have shaped the gene repertoires of extant viruses since their common ancestor are poorly characterized. In this study, we aimed to address this gap in knowledge by using amalgamated likelihood estimation, a probabilistic tree reconciliation method that infers evolutionary scenarios by distinguishing origination, gene duplications, virus-to-virus horizontal gene transfer (vHGT), and gene losses. We analyzed over 4,700 gene families from 195 genomes spanning all known viral orders. The evolutionary reconstruction suggests a history of extensive gene gains and losses during the evolution of these viruses, notably with vHGT contributing to gene gains at a comparable level to duplications and originations. The vHGT frequently occurred between phylogenetically closely related viruses, as well as between distantly related viruses with an overlapping host range. We observed a pattern of massive gene duplications that followed vHGTs for gene families that was potentially related to host range control and virus-host arms race. These results suggest that vHGT represents a previously overlooked, yet important, evolutionary force that integrates the evolutionary paths of multiple viruses and affects shaping of Nucleocytoviricota virus gene repertoires.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex Genomes of Early Nucleocytoviruses Revealed by Ancient Origins of Viral Aminoacyl-tRNA Synthetases. 病毒氨基酰-tRNA合成酶的古老起源揭示了早期核细胞病毒的复杂基因组。
IF 11 1区 生物学
Molecular biology and evolution Pub Date : 2024-08-02 DOI: 10.1093/molbev/msae149
Soichiro Kijima, Hiroyuki Hikida, Tom O Delmont, Morgan Gaïa, Hiroyuki Ogata
{"title":"Complex Genomes of Early Nucleocytoviruses Revealed by Ancient Origins of Viral Aminoacyl-tRNA Synthetases.","authors":"Soichiro Kijima, Hiroyuki Hikida, Tom O Delmont, Morgan Gaïa, Hiroyuki Ogata","doi":"10.1093/molbev/msae149","DOIUrl":"10.1093/molbev/msae149","url":null,"abstract":"<p><p>Aminoacyl-tRNA synthetases (aaRSs), also known as tRNA ligases, are essential enzymes in translation. Owing to their functional essentiality, these enzymes are conserved in all domains of life and used as informative markers to trace the evolutionary history of cellular organisms. Unlike cellular organisms, viruses generally lack aaRSs because of their obligate parasitic nature, but several large and giant DNA viruses in the phylum Nucleocytoviricota encode aaRSs in their genomes. The discovery of viral aaRSs led to the idea that the phylogenetic analysis of aaRSs can shed light on ancient viral evolution. However, conflicting results have been reported from previous phylogenetic studies: one posited that nucleocytoviruses recently acquired their aaRSs from their host eukaryotes, while another hypothesized that the viral aaRSs have ancient origins. Here, we investigated 4,168 nucleocytovirus genomes, including metagenome-assembled genomes (MAGs) derived from large-scale metagenomic studies. In total, we identified 780 viral aaRS sequences in 273 viral genomes. We generated and examined phylogenetic trees of these aaRSs with a large set of cellular sequences to trace evolutionary relationships between viral and cellular aaRSs. The analyses suggest that the origins of some viral aaRSs predate the last common eukaryotic ancestor. Inside viral aaRS clades, we identify intricate evolutionary trajectories of viral aaRSs with horizontal transfers, losses, and displacements. Overall, these results suggest that ancestral nucleocytoviruses already developed complex genomes with an expanded set of aaRSs in the proto-eukaryotic era.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TF-High-Evolutionary: In Vivo Mutagenesis of Gene Regulatory Networks for the Study of the Genetics and Evolution of the Drosophila Regulatory Genome. TF-High-Evolutionary:基因调控网络的体内诱变,用于研究果蝇调控基因组的遗传和进化。
IF 11 1区 生物学
Molecular biology and evolution Pub Date : 2024-08-02 DOI: 10.1093/molbev/msae167
Xueying C Li, Vani Srinivasan, Ian Laiker, Natalia Misunou, Nicolás Frankel, Luisa F Pallares, Justin Crocker
{"title":"TF-High-Evolutionary: In Vivo Mutagenesis of Gene Regulatory Networks for the Study of the Genetics and Evolution of the Drosophila Regulatory Genome.","authors":"Xueying C Li, Vani Srinivasan, Ian Laiker, Natalia Misunou, Nicolás Frankel, Luisa F Pallares, Justin Crocker","doi":"10.1093/molbev/msae167","DOIUrl":"10.1093/molbev/msae167","url":null,"abstract":"<p><p>Understanding the evolutionary potential of mutations in gene regulatory networks is essential to furthering the study of evolution and development. However, in multicellular systems, genetic manipulation of regulatory networks in a targeted and high-throughput way remains challenging. In this study, we designed TF-High-Evolutionary (HighEvo), a transcription factor (TF) fused with a base editor (activation-induced deaminase), to continuously induce germline mutations at TF-binding sites across regulatory networks in Drosophila. Populations of flies expressing TF-HighEvo in their germlines accumulated mutations at rates an order of magnitude higher than natural populations. Importantly, these mutations accumulated around the targeted TF-binding sites across the genome, leading to distinct morphological phenotypes consistent with the developmental roles of the tagged TFs. As such, this TF-HighEvo method allows the interrogation of the mutational space of gene regulatory networks at scale and can serve as a powerful reagent for experimental evolution and genetic screens focused on the regulatory genome.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Varying Selection Pressure for a Na+ Sensing Site in Epithelial Na+ Channel Subunits Reflect Divergent Roles in Na+ Homeostasis. 上皮细胞Na+通道亚基中Na+感应位点的选择压力不同,反映了它们在Na+稳态中的作用不同。
IF 11 1区 生物学
Molecular biology and evolution Pub Date : 2024-08-02 DOI: 10.1093/molbev/msae162
Xue-Ping Wang, Priyanka Srinivasan, Mustapha El Hamdaoui, Brandon M Blobner, Rafael Grytz, Ossama B Kashlan
{"title":"Varying Selection Pressure for a Na+ Sensing Site in Epithelial Na+ Channel Subunits Reflect Divergent Roles in Na+ Homeostasis.","authors":"Xue-Ping Wang, Priyanka Srinivasan, Mustapha El Hamdaoui, Brandon M Blobner, Rafael Grytz, Ossama B Kashlan","doi":"10.1093/molbev/msae162","DOIUrl":"10.1093/molbev/msae162","url":null,"abstract":"<p><p>The epithelial Na+ channel (ENaC) emerged early in vertebrates and has played a role in Na+ and fluid homeostasis throughout vertebrate evolution. We previously showed that proteolytic activation of the channel evolved at the water-to-land transition of vertebrates. Sensitivity to extracellular Na+, known as Na+ self-inhibition, reduces ENaC function when Na+ concentrations are high and is a distinctive feature of the channel. A fourth ENaC subunit, δ, emerged in jawed fishes from an α subunit gene duplication. Here, we analyzed 849 α and δ subunit sequences and found that a key Asp in a postulated Na+ binding site was nearly always present in the α subunit, but frequently lost in the δ subunit (e.g. human). Analysis of site evolution and codon substitution rates provide evidence that the ancestral α subunit had the site and that purifying selection for the site relaxed in the δ subunit after its divergence from the α subunit, coinciding with a loss of δ subunit expression in renal tissues. We also show that the proposed Na+ binding site in the α subunit is a bona fide site by conferring novel function to channels comprising human δ subunits. Together, our findings provide evidence that ENaC Na+ self-inhibition improves fitness through its role in Na+ homeostasis in vertebrates.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variation in the Spectrum of New Mutations among Inbred Strains of Mice. 近交系小鼠新突变谱的差异。
IF 11 1区 生物学
Molecular biology and evolution Pub Date : 2024-08-02 DOI: 10.1093/molbev/msae163
Eugenio López-Cortegano, Jobran Chebib, Anika Jonas, Anastasia Vock, Sven Künzel, Diethard Tautz, Peter D Keightley
{"title":"Variation in the Spectrum of New Mutations among Inbred Strains of Mice.","authors":"Eugenio López-Cortegano, Jobran Chebib, Anika Jonas, Anastasia Vock, Sven Künzel, Diethard Tautz, Peter D Keightley","doi":"10.1093/molbev/msae163","DOIUrl":"10.1093/molbev/msae163","url":null,"abstract":"<p><p>The mouse serves as a mammalian model for understanding the nature of variation from new mutations, a question that has both evolutionary and medical significance. Previous studies suggest that the rate of single-nucleotide mutations (SNMs) in mice is ∼50% of that in humans. However, information largely comes from studies involving the C57BL/6 strain, and there is little information from other mouse strains. Here, we study the mutations that accumulated in 59 mouse lines derived from four inbred strains that are commonly used in genetics and clinical research (BALB/cAnNRj, C57BL/6JRj, C3H/HeNRj, and FVB/NRj), maintained for eight to nine generations by brother-sister mating. By analyzing Illumina whole-genome sequencing data, we estimate that the average rate of new SNMs in mice is ∼μ = 6.7 × 10-9. However, there is substantial variation in the spectrum of SNMs among strains, so the burden from new mutations also varies among strains. For example, the FVB strain has a spectrum that is markedly skewed toward C→A transversions and is likely to experience a higher deleterious load than other strains, due to an increased frequency of nonsense mutations in glutamic acid codons. Finally, we observe substantial variation in the rate of new SNMs among DNA sequence contexts, CpG sites, and their adjacent nucleotides playing an important role.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Possible Earliest Allopolyploidization in Tracheophytes Revealed by Phylotranscriptomics and Morphology of Selaginellaceae. 系统转录组学和 Selaginellaceae 形态学揭示了气管植物中可能存在的最早异源多倍体化。
IF 11 1区 生物学
Molecular biology and evolution Pub Date : 2024-08-02 DOI: 10.1093/molbev/msae153
Jong-Soo Kang, Ji-Gao Yu, Qiao-Ping Xiang, Xian-Chun Zhang
{"title":"The Possible Earliest Allopolyploidization in Tracheophytes Revealed by Phylotranscriptomics and Morphology of Selaginellaceae.","authors":"Jong-Soo Kang, Ji-Gao Yu, Qiao-Ping Xiang, Xian-Chun Zhang","doi":"10.1093/molbev/msae153","DOIUrl":"10.1093/molbev/msae153","url":null,"abstract":"<p><p>Selaginellaceae, originated in the Carboniferous and survived the Permian-Triassic mass extinction, is the largest family of lycophyte, which is sister to other tracheophytes. It stands out from tracheophytes by exhibiting extraordinary habitat diversity and lacking polyploidization. The organelle genome-based phylogenies confirmed the monophyly of Selaginella, with six or seven subgenera grouped into two superclades, but the phylogenetic positions of the enigmatic Selaginella sanguinolenta clade remained problematic. Here, we conducted a phylogenomic study on Selaginellaceae utilizing large-scale nuclear gene data from RNA-seq to elucidate the phylogeny and explore the causes of the phylogenetic incongruence of the S. sanguinolenta clade. Our phylogenetic analyses resolved three different positions of the S. sanguinolenta clade, which were supported by the sorted three nuclear gene sets, respectively. The results from the gene flow test, species network inference, and plastome-based phylogeny congruently suggested a probable hybrid origin of the S. sanguinolenta clade involving each common ancestor of the two superclades in Selaginellaceae. The hybrid hypothesis is corroborated by the evidence from rhizophore morphology and spore micromorphology. The chromosome observation and Ks distributions further suggested hybridization accompanied by polyploidization. Divergence time estimation based on independent datasets from nuclear gene sets and plastid genome data congruently inferred that allopolyploidization occurred in the Early Triassic. To our best knowledge, the allopolyploidization in the Mesozoic reported here represents the earliest record of tracheophytes. Our study revealed a unique triad of phylogenetic positions for a hybrid-originated group with comprehensive evidence and proposed a hypothesis for retaining both parental alleles through gene conversion.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":"41 8","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple Horizontal Mini-chromosome Transfers Drive Genome Evolution of Clonal Blast Fungus Lineages. 多重水平小染色体转移推动了克隆疫霉菌系的基因组进化。
IF 11 1区 生物学
Molecular biology and evolution Pub Date : 2024-08-02 DOI: 10.1093/molbev/msae164
Ana Cristina Barragan, Sergio M Latorre, Angus Malmgren, Adeline Harant, Joe Win, Yu Sugihara, Hernán A Burbano, Sophien Kamoun, Thorsten Langner
{"title":"Multiple Horizontal Mini-chromosome Transfers Drive Genome Evolution of Clonal Blast Fungus Lineages.","authors":"Ana Cristina Barragan, Sergio M Latorre, Angus Malmgren, Adeline Harant, Joe Win, Yu Sugihara, Hernán A Burbano, Sophien Kamoun, Thorsten Langner","doi":"10.1093/molbev/msae164","DOIUrl":"10.1093/molbev/msae164","url":null,"abstract":"<p><p>Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信