Luke A Sarre, Giselle Azucena Gastellou Peralta, Pedro Romero Charria, Vladimir Ovchinnikov, Alex de Mendoza
{"title":"抑制胞嘧啶甲基化是病毒基因在不同真核生物间转移的标志。","authors":"Luke A Sarre, Giselle Azucena Gastellou Peralta, Pedro Romero Charria, Vladimir Ovchinnikov, Alex de Mendoza","doi":"10.1093/molbev/msaf176","DOIUrl":null,"url":null,"abstract":"<p><p>Cytosine DNA methylation patterns vary widely across eukaryotes, with its ancestral roles being understood to have included both transposable element (TE) silencing and host gene regulation. To further explore these claims, in this study, we reevaluate the evolutionary origins of DNA methyltransferases and characterize the roles of cytosine methylation on underexplored lineages, including the amoebozoan Acanthamoeba castellanii, the glaucophyte Cyanophora paradoxa, and the heterolobosean Naegleria gruberi. Our analysis of DNA methyltransferase evolution reveals a rich ancestral eukaryotic repertoire, with several eukaryotic lineages likely subsequently acquiring enzymes through lateral gene transfer (LGT). In the three species examined, DNA methylation is enriched on young TEs and silenced genes, suggesting an ancestral repressive function, without the transcription-linked gene body methylation of plants and animals. Consistent with this link with silencing, methylated genomic regions co-localize with heterochromatin marks, including H3K9me3 and H3K27me3. Notably, the closest homologs of many of the silenced, methylated genes in diverse eukaryotes belong to viruses, including giant viruses. Given the widespread occurrence of this pattern across diverse eukaryotic groups, we propose that cytosine methylation was a silencing mechanism originally acquired from bacterial donors, which was used to mitigate the expression of both transposable and viral elements, and that this function may persist in creating a permissive atmosphere for LGT in diverse eukaryotic lineages. These findings further highlight the importance of epigenetic information to annotate eukaryotic genomes, as it helps delimit potentially adaptive LGTs from silenced parasitic elements.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344493/pdf/","citationCount":"0","resultStr":"{\"title\":\"Repressive Cytosine Methylation is a Marker of Viral Gene Transfer Across Divergent Eukaryotes.\",\"authors\":\"Luke A Sarre, Giselle Azucena Gastellou Peralta, Pedro Romero Charria, Vladimir Ovchinnikov, Alex de Mendoza\",\"doi\":\"10.1093/molbev/msaf176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cytosine DNA methylation patterns vary widely across eukaryotes, with its ancestral roles being understood to have included both transposable element (TE) silencing and host gene regulation. To further explore these claims, in this study, we reevaluate the evolutionary origins of DNA methyltransferases and characterize the roles of cytosine methylation on underexplored lineages, including the amoebozoan Acanthamoeba castellanii, the glaucophyte Cyanophora paradoxa, and the heterolobosean Naegleria gruberi. Our analysis of DNA methyltransferase evolution reveals a rich ancestral eukaryotic repertoire, with several eukaryotic lineages likely subsequently acquiring enzymes through lateral gene transfer (LGT). In the three species examined, DNA methylation is enriched on young TEs and silenced genes, suggesting an ancestral repressive function, without the transcription-linked gene body methylation of plants and animals. Consistent with this link with silencing, methylated genomic regions co-localize with heterochromatin marks, including H3K9me3 and H3K27me3. Notably, the closest homologs of many of the silenced, methylated genes in diverse eukaryotes belong to viruses, including giant viruses. Given the widespread occurrence of this pattern across diverse eukaryotic groups, we propose that cytosine methylation was a silencing mechanism originally acquired from bacterial donors, which was used to mitigate the expression of both transposable and viral elements, and that this function may persist in creating a permissive atmosphere for LGT in diverse eukaryotic lineages. These findings further highlight the importance of epigenetic information to annotate eukaryotic genomes, as it helps delimit potentially adaptive LGTs from silenced parasitic elements.</p>\",\"PeriodicalId\":18730,\"journal\":{\"name\":\"Molecular biology and evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344493/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology and evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/molbev/msaf176\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf176","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Repressive Cytosine Methylation is a Marker of Viral Gene Transfer Across Divergent Eukaryotes.
Cytosine DNA methylation patterns vary widely across eukaryotes, with its ancestral roles being understood to have included both transposable element (TE) silencing and host gene regulation. To further explore these claims, in this study, we reevaluate the evolutionary origins of DNA methyltransferases and characterize the roles of cytosine methylation on underexplored lineages, including the amoebozoan Acanthamoeba castellanii, the glaucophyte Cyanophora paradoxa, and the heterolobosean Naegleria gruberi. Our analysis of DNA methyltransferase evolution reveals a rich ancestral eukaryotic repertoire, with several eukaryotic lineages likely subsequently acquiring enzymes through lateral gene transfer (LGT). In the three species examined, DNA methylation is enriched on young TEs and silenced genes, suggesting an ancestral repressive function, without the transcription-linked gene body methylation of plants and animals. Consistent with this link with silencing, methylated genomic regions co-localize with heterochromatin marks, including H3K9me3 and H3K27me3. Notably, the closest homologs of many of the silenced, methylated genes in diverse eukaryotes belong to viruses, including giant viruses. Given the widespread occurrence of this pattern across diverse eukaryotic groups, we propose that cytosine methylation was a silencing mechanism originally acquired from bacterial donors, which was used to mitigate the expression of both transposable and viral elements, and that this function may persist in creating a permissive atmosphere for LGT in diverse eukaryotic lineages. These findings further highlight the importance of epigenetic information to annotate eukaryotic genomes, as it helps delimit potentially adaptive LGTs from silenced parasitic elements.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.