Cate B Quinn, Sophie Preckler-Quisquater, Michael R Buchalski, Benjamin N Sacks
{"title":"Whole genomes inform genetic rescue strategy for montane red foxes in North America","authors":"Cate B Quinn, Sophie Preckler-Quisquater, Michael R Buchalski, Benjamin N Sacks","doi":"10.1093/molbev/msae193","DOIUrl":"https://doi.org/10.1093/molbev/msae193","url":null,"abstract":"A few iconic examples have proven the value of facilitated gene flow for counteracting inbreeding depression and staving off extinction, yet the practice is often not implemented for fear of causing outbreeding depression. Using genomic sequencing, climatic niche modeling, and demographic reconstruction, we sought to assess the risks and benefits of using translocations as a tool for recovery of endangered montane red fox (Vulpes vulpes) populations in the western United States. We demonstrated elevated inbreeding and homozygosity of deleterious alleles across all populations, but especially those isolated in the Cascade and Sierra Nevada ranges. Consequently, translocations would be expected to increase population growth by masking deleterious recessive alleles. Demographic reconstructions further indicated shallow divergences of less than a few thousand years among montane populations, suggesting low risk of outbreeding depression. These genomic-guided findings set the stage for future management, the documentation of which will provide a roadmap for recovery of other data-deficient taxa.","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":"2 1","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caio A Leal-Dutra, Joel Vizueta, Tobias Baril, Pepijn W Kooij, Asta Rødsgaard-Jørgensen, Benjamin H Conlon, Daniel Croll, Jonathan Z Shik
{"title":"Genomic Signatures of Domestication in a Fungus Obligately Farmed by Leafcutter Ants","authors":"Caio A Leal-Dutra, Joel Vizueta, Tobias Baril, Pepijn W Kooij, Asta Rødsgaard-Jørgensen, Benjamin H Conlon, Daniel Croll, Jonathan Z Shik","doi":"10.1093/molbev/msae197","DOIUrl":"https://doi.org/10.1093/molbev/msae197","url":null,"abstract":"The naturally selected fungal crop (Leucoagaricus gongylophorus) farmed by leafcutter ants shows striking parallels with artificially selected plant crops domesticated by humans (e.g., polyploidy, engorged nutritional rewards, dependence on cultivation). To date, poorly resolved L. gongylophorus genome assemblies based on short-read sequencing have constrained hypotheses about how millions of years under cultivation by ants shaped the fungal crop genome and potentially drove domestication. We use PacBio HiFi sequencing of L. gongylophorus from the leafcutter ant Atta colombica to identify 18 putatively novel biosynthetic gene clusters that likely cemented life as a cultivar (e.g., plant fragment degradation, ant-farmer communication, antimicrobial defense). Comparative analyses with cultivated and free-living fungi showed genomic signatures of stepwise domestication transitions: 1) free-living to ant-cultivated: loss of genes conferring stress response and detoxification, 2) hyphal food to engorged nutritional rewards: expansions of genes governing cellular homeostasis, carbohydrate metabolism, and siderophore biosynthesis, and 3) detrital provisioning to freshly cut plant fragments: gene expansions promoting cell wall biosynthesis, fatty acid metabolism, and DNA repair. Comparisons across L. gongylophorus fungi farmed by three leafcutter ant species highlight genomic signatures of exclusively vertical clonal propagation and widespread transposable element activity. These results show how natural selection can shape domesticated cultivar genomes towards long-term ecological resilience of farming systems that have thrived across millennia.","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":"54 1","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The chromosome-level genome provides insights into the evolution and adaptation of extreme aggression","authors":"Peng-Cheng Liu, Zi-Yin Wang, Mei Qi, Hao-Yuan Hu","doi":"10.1093/molbev/msae195","DOIUrl":"https://doi.org/10.1093/molbev/msae195","url":null,"abstract":"Extremely aggressive behavior, as the special pattern, is rare in most species and characteristic as contestants severely injured or killed ending the combat. Current studies of extreme aggression are mainly from the perspectives of behavioral ecology and evolution, while lacked the aspects of molecular evolutionary biology. Here, a high-quality chromosome-level genome of the parasitoid Anastatus disparis was provided, which the males exhibit extreme mate-competition aggression. The integrated multiomics analysis highlighted that neurotransmitter dopamine overexpression, energy metabolism (especially from lipid) and antibacterial activity are likely major aspects of evolutionary formation and adaptation for extreme aggression in A. disparis. Conclusively, our study provided new perspectives for molecular evolutionary studies of extreme aggression as well as a valuable genomic resource in Hymenoptera.","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":"31 1","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maeva Leitwein, G Durif, E Delpuech, P A Gagnaire, B Ernande, M Vandeputte, A Vergnet, M Duranton, F Clota, F Allal
{"title":"The fate of a polygenic phenotype within the genomic landscapes of introgression in the European seabass hybrid zone","authors":"Maeva Leitwein, G Durif, E Delpuech, P A Gagnaire, B Ernande, M Vandeputte, A Vergnet, M Duranton, F Clota, F Allal","doi":"10.1093/molbev/msae194","DOIUrl":"https://doi.org/10.1093/molbev/msae194","url":null,"abstract":"Unraveling the evolutionary mechanisms and consequences of hybridization is a major concern in biology. Many studies have documented the interplay between recombination and selection in modulating the genomic landscape of introgression, but few have considered how associations with phenotype may affect this landscape. Here, we use the European seabass (Dicentrarchus labrax), a key species in marine aquaculture that undergoes natural hybridization, to determine how selection on phenotype modulates the introgression landscape between Atlantic and Mediterranean lineages. We use a high-density SNP array to assess individual local ancestry along the genome and improve the mapping of muscle fat content, a polygenic trait that is divergent between lineages. Taking into account variation in recombination rates, we reveal a purging of Atlantic ancestry in the admixed Mediterranean populations. While Atlantic individuals had higher muscle fat content, we observed that genomic regions associated with this trait in Mediterranean populations displayed reduced introgression of Atlantic ancestry. These results emphasize how selection against maladapted alleles shape the genomic landscape of introgression.","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":"122 1","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabiola León, Eduardo Pizarro, Daly Noll, Luis R Pertierra, Patricia Parker, Marcela P A Espinaze, Guillermo Luna-Jorquera, Alejandro Simeone, Esteban Frere, Gisele P M Dantas, Robin Cristofari, Omar E Cornejo, Rauri C K Bowie, Juliana A Vianna
{"title":"Comparative Genomics Supports Ecologically Induced Selection as a Putative Driver of Banded Penguin Diversification.","authors":"Fabiola León, Eduardo Pizarro, Daly Noll, Luis R Pertierra, Patricia Parker, Marcela P A Espinaze, Guillermo Luna-Jorquera, Alejandro Simeone, Esteban Frere, Gisele P M Dantas, Robin Cristofari, Omar E Cornejo, Rauri C K Bowie, Juliana A Vianna","doi":"10.1093/molbev/msae166","DOIUrl":"10.1093/molbev/msae166","url":null,"abstract":"<p><p>The relative importance of genetic drift and local adaptation in facilitating speciation remains unclear. This is particularly true for seabirds, which can disperse over large geographic distances, providing opportunities for intermittent gene flow among distant colonies that span the temperature and salinity gradients of the oceans. Here, we delve into the genomic basis of adaptation and speciation of banded penguins, Galápagos (Spheniscus mendiculus), Humboldt (Spheniscus humboldti), Magellanic (Spheniscus magellanicus), and African penguins (Spheniscus demersus), by analyzing 114 genomes from the main 16 breeding colonies. We aim to identify the molecular mechanism and genomic adaptive traits that have facilitated their diversifications. Through positive selection and gene family expansion analyses, we identified candidate genes that may be related to reproductive isolation processes mediated by ecological thermal niche divergence. We recover signals of positive selection on key loci associated with spermatogenesis, especially during the recent peripatric divergence of the Galápagos penguin from the Humboldt penguin. High temperatures in tropical habitats may have favored selection on loci associated with spermatogenesis to maintain sperm viability, leading to reproductive isolation among young species. Our results suggest that genome-wide selection on loci associated with molecular pathways that underpin thermoregulation, osmoregulation, hypoxia, and social behavior appears to have been crucial in local adaptation of banded penguins. Overall, these results contribute to our understanding of how the complexity of biotic, but especially abiotic, factors, along with the high dispersal capabilities of these marine species, may promote both neutral and adaptive lineage divergence even in the presence of gene flow.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nathan Rives, Vinita Lamba, C H Christina Cheng, Xuan Zhuang
{"title":"Diverse Origins of Near-Identical Antifreeze Proteins in Unrelated Fish Lineages Provide Insights Into Evolutionary Mechanisms of New Gene Birth and Protein Sequence Convergence.","authors":"Nathan Rives, Vinita Lamba, C H Christina Cheng, Xuan Zhuang","doi":"10.1093/molbev/msae182","DOIUrl":"10.1093/molbev/msae182","url":null,"abstract":"<p><p>Determining the origins of novel genes and the mechanisms driving the emergence of new functions is challenging yet crucial for understanding evolutionary innovations. Recently evolved fish antifreeze proteins (AFPs) offer a unique opportunity to explore these processes, particularly the near-identical type I AFP (AFPI) found in four phylogenetically divergent fish taxa. This study tested the hypothesis of protein sequence convergence beyond functional convergence in three unrelated AFPI-bearing fish lineages. Through comprehensive comparative analyses of newly sequenced genomes of winter flounder and grubby sculpin, along with available high-quality genomes of cunner and 14 other related species, the study revealed that near-identical AFPI proteins originated from distinct genetic precursors in each lineage. Each lineage independently evolved a de novo coding region for the novel ice-binding protein while repurposing fragments from their respective ancestors into potential regulatory regions, representing partial de novo origination-a process that bridges de novo gene formation and the neofunctionalization of duplicated genes. The study supports existing models of new gene origination and introduces new ones: the innovation-amplification-divergence model, where novel changes precede gene duplication; the newly proposed duplication-degeneration-divergence model, which describes new functions arising from degenerated pseudogenes; and the duplication-degeneration-divergence gene fission model, where each new sibling gene differentially degenerates and renovates distinct functional domains from their parental gene. These findings highlight the diverse evolutionary pathways through which a novel functional gene with convergent sequences at the protein level can evolve across divergent species, advancing our understanding of the mechanistic intricacies in new gene formation.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diversity in Recombination Hotspot Characteristics and Gene Structure Shape Fine-Scale Recombination Patterns in Plant Genomes.","authors":"Thomas Brazier, Sylvain Glémin","doi":"10.1093/molbev/msae183","DOIUrl":"https://doi.org/10.1093/molbev/msae183","url":null,"abstract":"<p><p>During the meiosis of many eukaryote species, crossovers tend to occur within narrow regions called recombination hotspots. In plants, it is generally thought that gene regulatory sequences, especially promoters and 5' to 3' untranslated regions, are enriched in hotspots, but this has been characterized in a handful of species only. We also lack a clear description of fine-scale variation in recombination rates within genic regions and little is known about hotspot position and intensity in plants. To address this question, we constructed fine-scale recombination maps from genetic polymorphism data and inferred recombination hotspots in 11 plant species. We detected gradients of recombination in genic regions in most species, yet gradients varied in intensity and shape depending on specific hotspot locations and gene structure. To further characterize recombination gradients, we decomposed them according to gene structure by rank and number of exons. We generalized the previously observed pattern that recombination hotspots are organized around the boundaries of coding sequences, especially 5' promoters. However, our results also provided new insight into the relative importance of the 3' end of genes in some species and the possible location of hotspots away from genic regions in some species. Variation among species seemed driven more by hotspot location among and within genes than by differences in size or intensity among species. Our results shed light on the variation in recombination rates at a very fine scale, revealing the diversity and complexity of genic recombination gradients emerging from the interaction between hotspot location and gene structure.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":"41 9","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ariadna E Morales, Frank T Burbrink, Marion Segall, Maria Meza, Chetan Munegowda, Paul W Webala, Bruce D Patterson, Vu Dinh Thong, Manuel Ruedi, Michael Hiller, Nancy B Simmons
{"title":"Distinct Genes with Similar Functions Underlie Convergent Evolution in Myotis Bat Ecomorphs.","authors":"Ariadna E Morales, Frank T Burbrink, Marion Segall, Maria Meza, Chetan Munegowda, Paul W Webala, Bruce D Patterson, Vu Dinh Thong, Manuel Ruedi, Michael Hiller, Nancy B Simmons","doi":"10.1093/molbev/msae165","DOIUrl":"10.1093/molbev/msae165","url":null,"abstract":"<p><p>Convergence offers an opportunity to explore to what extent evolution can be predictable when genomic composition and environmental triggers are similar. Here, we present an emergent model system to study convergent evolution in nature in a mammalian group, the bat genus Myotis. Three foraging strategies-gleaning, trawling, and aerial hawking, each characterized by different sets of phenotypic features-have evolved independently multiple times in different biogeographic regions in isolation for millions of years. To investigate the genomic basis of convergence and explore the functional genomic changes linked to ecomorphological convergence, we sequenced and annotated 17 new genomes and screened 16,426 genes for positive selection and associations between relative evolutionary rates and foraging strategies across 30 bat species representing all Myotis ecomorphs across geographic regions as well as among sister groups. We identify genomic changes that describe both phylogenetic and ecomorphological trends. We infer that colonization of new environments may have first required changes in genes linked to hearing sensory perception, followed by changes linked to fecundity and development, metabolism of carbohydrates, and heme degradation. These changes may be linked to prey acquisition and digestion and match phylogenetic trends. Our findings also suggest that the repeated evolution of ecomorphs does not always involve changes in the same genes but rather in genes with the same molecular functions such as developmental and cellular processes.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hector Banos, Thomas K F Wong, Justin Daneau, Edward Susko, Bui Quang Minh, Robert Lanfear, Matthew W Brown, Laura Eme, Andrew J Roger
{"title":"GTRpmix: A Linked General Time-Reversible Model for Profile Mixture Models.","authors":"Hector Banos, Thomas K F Wong, Justin Daneau, Edward Susko, Bui Quang Minh, Robert Lanfear, Matthew W Brown, Laura Eme, Andrew J Roger","doi":"10.1093/molbev/msae174","DOIUrl":"10.1093/molbev/msae174","url":null,"abstract":"<p><p>Profile mixture models capture distinct biochemical constraints on the amino acid substitution process at different sites in proteins. These models feature a mixture of time-reversible models with a common matrix of exchangeabilities and distinct sets of equilibrium amino acid frequencies known as profiles. Combining the exchangeability matrix with each profile generates the matrix of instantaneous rates of amino acid exchange for that profile. Currently, empirically estimated exchangeability matrices (e.g. the LG matrix) are widely used for phylogenetic inference under profile mixture models. However, these were estimated using a single profile and are unlikely optimal for profile mixture models. Here, we describe the GTRpmix model that allows maximum likelihood estimation of a common exchangeability matrix under any profile mixture model. We show that exchangeability matrices estimated under profile mixture models differ from the LG matrix, dramatically improving model fit and topological estimation accuracy for empirical test cases. Because the GTRpmix model is computationally expensive, we provide two exchangeability matrices estimated from large concatenated phylogenomic-supermatrices to be used for phylogenetic analyses. One, called Eukaryotic Linked Mixture (ELM), is designed for phylogenetic analysis of proteins encoded by nuclear genomes of eukaryotes, and the other, Eukaryotic and Archaeal Linked mixture (EAL), for reconstructing relationships between eukaryotes and Archaea. These matrices, combined with profile mixture models, fit data better and have improved topology estimation relative to the LG matrix combined with the same mixture models. Starting with version 2.3.1, IQ-TREE2 allows users to estimate linked exchangeabilities (i.e. amino acid exchange rates) under profile mixture models.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371462/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Horizontal Gene Transfer of a key Translation Factor and its Role in Polyproline Proteome Evolution.","authors":"Tess E Brewer, Andreas Wagner","doi":"10.1093/molbev/msae180","DOIUrl":"10.1093/molbev/msae180","url":null,"abstract":"<p><p>Prolines cause ribosomes to stall during translation due to their rigid structure. This phenomenon occurs in all domains of life and is exacerbated at polyproline motifs. Such stalling can be eased by the elongation factor P (EF-P) in bacteria. We discovered a potential connection between the loss of ancestral EF-P, the appearance of horizontally transferred EF-P variants, and genomic signs of EF-P dysfunction. Horizontal transfer of the efp gene has occurred several times among bacteria and is associated with the loss of highly conserved polyproline motifs. In this study, we pinpoint cases of horizontal EF-P transfer among a diverse set of bacteria and examine genomic features associated with these events in the phyla Thermotogota and Planctomycetes. In these phyla, horizontal EF-P transfer is also associated with the loss of entire polyproline motif-containing proteins, whose expression is likely dependent on EF-P. In particular, three proteases (Lon, ClpC, and FtsH) and three tRNA synthetases (ValS, IleS1, and IleS2) appear highly sensitive to EF-P transfer. The conserved polyproline motifs within these proteins all reside within close proximity to ATP-binding-regions, some of which are crucial for their function. Our work shows that an ancient EF-P dysfunction has left genomic traces that persist to this day, although it remains unclear whether this dysfunction was strictly due to loss of ancestral EF-P or was related to the appearance of an exogenous variant. The latter possibility would imply that the process of \"domesticating\" a horizontally transferred efp gene can perturb the overall function of EF-P.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}