Shuanghui Chen, Yan Lu, Hao Chen, Yuwen Pan, Jiaojiao Liu, Shilin Li, Li Jin, Dolikun Mamatyusupu, Shuhua Xu
{"title":"Tracing the Genetic Heritage of the Kirgiz People: Dual-Wave Admixture and Ancestry-Biased Adaptation.","authors":"Shuanghui Chen, Yan Lu, Hao Chen, Yuwen Pan, Jiaojiao Liu, Shilin Li, Li Jin, Dolikun Mamatyusupu, Shuhua Xu","doi":"10.1093/molbev/msaf196","DOIUrl":null,"url":null,"abstract":"<p><p>The Kirgiz, a Turkic-speaking ethnic group with a rich nomadic heritage, represent a pivotal population for understanding human migration and adaptation in Central Asia. However, their genetic origins and admixture history remain largely unexplored. Here, we present the first comprehensive genomic study of Kirgiz populations from Xinjiang, China (XJ.KGZ, n = 36) and their counterparts in Kyrgyzstan (KRG), integrating genome-wide data of 2,406 global individuals. Our analyses reveal four primary ancestry components in XJ.KGZ: East Asian (41.7%), Siberian (25.6%), West Eurasian (25.2%), and South Asian (7.6%). Despite close genetic affinity (FST = 0.13%), XJ.KGZ and KRG diverged ∼447 years ago, with limited gene flow post-split. A two-wave admixture model elucidates their demographic history: an initial East-West Eurasian mixture ∼2,225 years ago, likely reflecting west-east contacts during the period of the Warring States and the Qin Dynasty, followed by secondary admixture events (∼875 to 425 years ago) linked to historical migrations under Mongol and post-Mongol rule. Local adaptation signatures implicate genes critical for cellular tight junction (e.g. PATJ), pathogen invasion (e.g. OR14I1), and cardiac functions (e.g. RYR2) with allele frequency deviations suggesting ancestry-specific selection. While no classical high-altitude adaptation genes (e.g. EPAS1) showed selection signals, RYR2 and C10orf67-implicated in hypoxia response in Tibetan fauna-displayed Western ancestry bias, hinting at convergent adaptation mechanisms. This study advances our understanding of the genetic makeup and admixture history of the Kirgiz people and provides novel insights into human dispersal in Central Asia.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12391873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf196","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Kirgiz, a Turkic-speaking ethnic group with a rich nomadic heritage, represent a pivotal population for understanding human migration and adaptation in Central Asia. However, their genetic origins and admixture history remain largely unexplored. Here, we present the first comprehensive genomic study of Kirgiz populations from Xinjiang, China (XJ.KGZ, n = 36) and their counterparts in Kyrgyzstan (KRG), integrating genome-wide data of 2,406 global individuals. Our analyses reveal four primary ancestry components in XJ.KGZ: East Asian (41.7%), Siberian (25.6%), West Eurasian (25.2%), and South Asian (7.6%). Despite close genetic affinity (FST = 0.13%), XJ.KGZ and KRG diverged ∼447 years ago, with limited gene flow post-split. A two-wave admixture model elucidates their demographic history: an initial East-West Eurasian mixture ∼2,225 years ago, likely reflecting west-east contacts during the period of the Warring States and the Qin Dynasty, followed by secondary admixture events (∼875 to 425 years ago) linked to historical migrations under Mongol and post-Mongol rule. Local adaptation signatures implicate genes critical for cellular tight junction (e.g. PATJ), pathogen invasion (e.g. OR14I1), and cardiac functions (e.g. RYR2) with allele frequency deviations suggesting ancestry-specific selection. While no classical high-altitude adaptation genes (e.g. EPAS1) showed selection signals, RYR2 and C10orf67-implicated in hypoxia response in Tibetan fauna-displayed Western ancestry bias, hinting at convergent adaptation mechanisms. This study advances our understanding of the genetic makeup and admixture history of the Kirgiz people and provides novel insights into human dispersal in Central Asia.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.