Wei Wang, Liangzhao Mu, Hongliang Zhao, Xiaoyi Cai, Fengqin Liu, Hong Yong Sohn
{"title":"CFD Study on Improvement of Non-uniform Stirring in a Large Bottom-Blown Copper Smelting Furnace","authors":"Wei Wang, Liangzhao Mu, Hongliang Zhao, Xiaoyi Cai, Fengqin Liu, Hong Yong Sohn","doi":"10.1007/s42461-024-00968-6","DOIUrl":"https://doi.org/10.1007/s42461-024-00968-6","url":null,"abstract":"<p>The bottom-blown smelting technology has been widely adopted in non-ferrous metal smelting industries. The largest bottom-blown smelting furnace used in copper smelting was numerically simulated to improve the stirring effect in the molten bath by optimizing the oxygen injector arrangement and blowing parameters. The results show that a small injector spacing leads to gas jet coalescence, which is detrimental for smelting efficiency, increases copper loss and shortens furnace service life. Three schemes were proposed to improve the uneven stirring and reduce the gas jet coalescence by increasing the axial spacing of the injectors, the radial installation angle and the gas injection angle. Changing the axial spacing of the injectors can significantly reduce the gas jet coalescence, yielding the best stirring effect. The results of simulation suggested that when the axial spacing of the injectors was increased from 0.380 m to 0.610 m, the mean melt velocity in the mixing zone increased to 0.243 m/s, which was 20.9% higher than that before the optimization. Meanwhile the <span>(varvec{RSD})</span> (relative standard spatial deviation of melt velocity) decreased from 123% to 84%. In the actual production, the matte content in the smelting slag decreased from 6.57% to 3.12% after changing the axial spacing of the injectors from 0.380 m to 0.610 m.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"70 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. M. Asem, A. A. El-Midany, M. F. Abadir, S. E. El-Mofty
{"title":"Exploring the Behavior of Quartz-Glauconite-Phosphate Flotation System","authors":"O. M. Asem, A. A. El-Midany, M. F. Abadir, S. E. El-Mofty","doi":"10.1007/s42461-024-00973-9","DOIUrl":"https://doi.org/10.1007/s42461-024-00973-9","url":null,"abstract":"<p>Glauconite is a clay mineral that is most probably mined with phosphate and represents a challenge for phosphate upgrading by flotation. Reverse flotation is a common method for removing silica and silicate from siliceous phosphate. Thus, a systemic study was conducted to determine the effect of clay and its interactions with siliceous phosphate ore components on its cleaning by flotation. The flotation of each mineral (phosphate, quartz, and clay) was tested in terms of product recovery using quaternary amine at pH 9. In addition, the settling behavior of each mineral was investigated with and without quaternary amine. Binary and tertiary systems were studied to investigate the interactions between the main ore-containing minerals. The results of each mineral flotation test showed that quartz has the highest floatability, with low floatability of both phosphate and glauconite by quaternary amine. The presence of glauconite does not affect the phosphate recovery, whereas glauconite reduces the quartz floatability, which deteriorates the quartz removal from phosphate. Finally, the interaction mechanisms in the different systems are illustrated.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"21 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amru Daulay, Lukman Hakim Nasution, Widi Astuti, Fika Rofiek Mufakhir, Slamet Sumardi, Hendra Prasetia
{"title":"Studies for Extraction and Separation of Rare Earth Elements by Adsorption from Wastewater: A Review","authors":"Amru Daulay, Lukman Hakim Nasution, Widi Astuti, Fika Rofiek Mufakhir, Slamet Sumardi, Hendra Prasetia","doi":"10.1007/s42461-024-00974-8","DOIUrl":"https://doi.org/10.1007/s42461-024-00974-8","url":null,"abstract":"<p>Rare earth elements (REEs) are utilized in numerous disciplines, including chemical engineering, the nuclear industry, metallurgy, medicine, electronics, and computer technology. Recycling products containing and extracting them from effluent is necessary to satisfy the rising demand for these elements. Some studies investigate the adsorption of rare earth elements from dilute aqueous solutions to remove them from effluent. Based on the results of this study, it can be concluded that lab tests demonstrate high adsorption capacities, which vary widely depending on the adsorption type and conditions. The Langmuir, Freundlich, and Temkin isotherms usually describe adsorption isotherms. In addition, the finest models for describing adsorption kinetics are pseudo-second-order and pseudo-first-order models. The thermodynamic parameters, such as the changes in free energy, enthalpy, and entropy, provide additional information regarding the energy changes. Additional research is required to develop environmentally friendly adsorbents that can be used to remove REEs from actual mine wastewater.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"300 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fathan Bahfie, Yepi Triapriani, Achmad Shofi, Fajar Nurjaman, Slamet Sumardi, Ulin Herlina, Riska N. Tirmayani, Pulung Karo Karo, Diah Susanti
{"title":"The Effect of Sodium Sulfide and Anthracite Dosage on Selective Reduction of Limonite","authors":"Fathan Bahfie, Yepi Triapriani, Achmad Shofi, Fajar Nurjaman, Slamet Sumardi, Ulin Herlina, Riska N. Tirmayani, Pulung Karo Karo, Diah Susanti","doi":"10.1007/s42461-024-00972-w","DOIUrl":"https://doi.org/10.1007/s42461-024-00972-w","url":null,"abstract":"<p>The process of selectively reducing limonite ore involves adding 10 wt% sodium sulfide and using anthracite as a reducing agent in varying amounts (5, 10, 15, and 20 wt%). The research aims to optimize the extraction process by studying how factors like reduction temperature, holding time, and reducing agent dosage affect on iron and nickel content and recovery. The ideal conditions identified are a temperature of 1150 °C, a 10 wt% additive, and a corresponding 10 wt% reducing agent amount, with a crucial 60-min reduction process. X-ray diffraction (XRD) results show dominant phases like iron-nickel (FeNi), iron sulfide (FeS), fayalite (Fe<sub>2</sub>SiO<sub>4</sub>), and wustite (FeO) under these conditions, indicating complex chemical interactions. Impressive X-ray fluorescence (XRF) test results precisely measure a nickel component with a 3.03 wt% and a recovery rate of 89.32%, highlighting the process’s effectiveness in extracting potential from limonitic nickel ore. The resulting ferronickel alloy has a controlled particle size of 29.23 µm. The study emphasizes the influence of sodium sulfide and anthracite dosage on the selective reduction of limonite ore.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"2022 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bastnaesite Beneficiation by Froth Flotation and Gravity Separation","authors":"Nathaneal Williams, Corby Anderson","doi":"10.1007/s42461-024-00971-x","DOIUrl":"https://doi.org/10.1007/s42461-024-00971-x","url":null,"abstract":"<p>Rare earth elements are in high demand in the USA. Bastnaesite, a rare earth fluorocarbonate containing primarily cerium and lanthanum, is one of the most abundant sources of rare earths in the USA. This research was completed using the ore from Mountain Pass, which is the largest rare earth mine in the USA. This research, resulting in a current patent application, was done to find a way to combine flotation with novel collectors and gravity separation techniques to reach an enhanced grade and recovery of rare earth elements while rejecting the gangue minerals, calcite, barite, and silicate minerals. These minerals, particularly calcite, an acid consumer, are well known to be difficult to separate in conventional flotation of bastnaesite ore. Four collectors were examined. They were N,2-dihydroxybenzamide, N-hydroxycyclohexanecarboxamide, N,3- dihydroxy-2-naphthamide, and N-hydroxyoleamide. Through this analysis, it was determined that, to obtain the desired results, flotation would be the rougher stage and gravity separation would be utilized as the cleaner stage. Bench scale flotation tests were conducted on the run of mine ore using conditions that were determined using a previously utilized Stat Ease model for testing and statistical optimization in design of experimentation. The bench tests that produced the most desirable results were then scaled up to a 10 kg float test. A concentrate from this test showed a rare earth oxide grade of 44%, while rejecting 91% of the calcite. This concentrate was used for gravity separation. Through gravity separation, it was found that another 40% of the calcite could be rejected with a final rare earth oxide grade of 47% in the concentrate.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"8 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of Mining Width-Constrained Open Pit Mine Production Scheduling Problem to the Medium-Term Planning of Radomiro Tomic Mine: A Case Study","authors":"Juan L. Yarmuch, Gonzalo Sepulveda","doi":"10.1007/s42461-024-00970-y","DOIUrl":"https://doi.org/10.1007/s42461-024-00970-y","url":null,"abstract":"<p>This article presents a novel approach to address the mining width-constrained open pit mine production scheduling problem in the context of medium-term planning. A mathematical formulation is proposed to incorporate mining width constraints into the production scheduling process, aiming to maximize the NPV of the schedule while ensuring enough room for the operation of mining equipment. To tackle the computational challenges posed by large-scale instances of the problem, we propose a method based on variable fixing and horizontal precedence generation. In this study, we apply the developed model to real-world scenarios from Radomiro Tomic short-term mine planning problems such as optimizing the timing of major truck maintenance and the impact of external factors, like the delay in the production of the Chuquicamata underground project. Remarkable improvements are observed with the mining width-constrained model. Specifically, the mining width satisfiability is enhanced from 2 to 60% compared to the traditional open pit mine production scheduling model, underscoring the significance of incorporating these constraints. The proposed method showed good results reaching optimality gaps within 5%.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"73 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. C. de Kooker, M. Ferentinou, I. Musonda, K. Esmaeili
{"title":"Investigation of the stability of a fly ash pond facility using 2D and 3D slope stability analysis","authors":"L. C. de Kooker, M. Ferentinou, I. Musonda, K. Esmaeili","doi":"10.1007/s42461-024-00961-z","DOIUrl":"https://doi.org/10.1007/s42461-024-00961-z","url":null,"abstract":"<p>A numerical investigation of the effect of pore pressure regime on the safety factor and the critical failure mechanism is presented for fly ash storage facility. Pore pressures’ measurements from standpipe piezometers and pore pressure estimated from seepage analysis are used to compare the factor of safety for a fly ash slope. This was applied for considering static and seismic scenarios. A probabilistic approach was applied to account for the uncertainties resulting from the limited data available and support a qualitative risk assessment evaluation. Slope stability analysis is conducted in two and three dimensions, adopting the limit equilibrium analysis approach, and also a finite element seepage analysis, to assess the stability of the slope. The two-dimensional cross-sections were extruded to three-dimensional models to estimate the factor of safety and associated shear failure. The results from the performed analysis suggest an increase in safety factor values of 5%.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"33 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Designers’ Perspective on Autonomous Mining Systems and Sociotechnology","authors":"","doi":"10.1007/s42461-024-00952-0","DOIUrl":"https://doi.org/10.1007/s42461-024-00952-0","url":null,"abstract":"<h3>Abstract</h3> <p>Digitalization and automation technology offer new possibilities to increase productivity and obtain higher levels of autonomy in mining operations. Introducing autonomous systems into mining is not only a technical problem in terms of effectiveness and efficiency, nor a problem of safety in human-automation interactions. The systems also need to be designed and developed so that they foster healthy and attractive working environments. The design and development phase of new mining technology has not been extensively studied previously. To fill this knowledge gap, we investigated technology developers’ basic assumptions about humans and their interactions with the technology they develop. We conducted five semi-structured workshops within an EU funded project concerned with developing digitalization and automation solutions for the mining industry. The data suggests that many critical functions will still be under human control in future mining systems. The results also indicate increased complexity in the interaction between autonomous systems and humans as the technology becomes more advanced. As a result, we suggest that a human perspective, based on sociotechnical principles, should not only be considered in implementing the technology at mines but also in the early conceptual phases of developing and designing the technology. This will ensure healthy and attractive work environments in the future mining industry.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"273 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Experimental Study on Effect of Limited Boundness (LB) on Peak and Residual Strength of Intact Rock","authors":"Sonu, Shailendra Chawla, Ashok Jaiswal","doi":"10.1007/s42461-024-00963-x","DOIUrl":"https://doi.org/10.1007/s42461-024-00963-x","url":null,"abstract":"<p>Side spalling/skin failure occurs due to the high-induced stress in underground structures. In such cases, rock bolting or other support systems are being used to control the skin failure or spalling of the pillar. The nature of these support systems is passive, which acts during the deformation. These support systems restrict the displacement considerably of the side/or roof surface of the excavation. Ultimately, it improves the stability of the structure because of the increment in residual strength of rock mass. It is noted that these passive support systems give very low confinement in the range of 0–0.015 MPa at the onset of failure. As the level of confinement will be very low and dependent with progress of failure, triaxial test was not found practically suitable. Thus, an alternative procedure of testing has been proposed. In the procedure, sides of sample have been restricted little bit by using adhesive tape. It provides the limited boundness on the lateral direction (LBLD) of rock specimen. The uniaxial compression strength (<i>UCS</i>) test has been performed on 30 numbers of cylindrical rock specimens using the servo-controlled stiff testing machine. Specifically, two rock types (medium-coarse–grained and coarse-grained rocks) were studied in terms of stress–strain behaviour so that a full residual strength envelope for each specimen was obtained. This study reveals that the residual strength of limited confined rock specimens has been significantly increased as compared to unconfined rock for both groups of rock types. The average residual strength of LBLD specimens of fine-grained rock and medium coarse-grained rock has been increased around 12 times, and five times as compared to unconfined rock, respectively. The average peak strength of LBLD rock specimens has been increased in the range of 30.5 to 48.6% for coarse-grained rock. The results of this study have been presented in terms of peak strength, residual strength and Young’s modulus of rock, and the post-peak failure behaviour of rock specimens was also critically analysed through a stress–strain curve.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"264 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing Roof Fall Rate Prediction in Underground Coal Mines: A Comprehensive Analysis Using the Rock Engineering System Method","authors":"Hadi Fattahi, Hossein Ghaedi","doi":"10.1007/s42461-024-00962-y","DOIUrl":"https://doi.org/10.1007/s42461-024-00962-y","url":null,"abstract":"<p>Despite the significant role of coal in the economic progress of nations, the occupational and health risks associated with its mining pose a major concern for industry stakeholders. The occurrence of roof collapses in coal mines remains a critical factor leading to substantial loss of life and financial damages for miners. Therefore, accurately predicting the roof fall rate (RFR) holds paramount importance. However, the uncertainty surrounding rock parameters in mines hinders the application of conventional methods to assess roof collapse rates in coal mines. To tackle the challenges associated with predicting roof fall rates in underground coal mines, this study proposes a novel solution by leveraging the Rock Engineering System (RES) method. The investigation is grounded in a dataset comprising 109 data points, encompassing crucial input parameters like depth of cover (DOF), primary roof support (PRSUP), intersection diagonal span (IS), mining height (MH), and coal mine roof rating (CMRR). In the model construction phase, 80% of the data (87 points) were utilized to build the RES model. A critical aspect of this study involves the evaluation of the RES model’s performance against alternative regression techniques, namely linear, power, exponential, polynomial, and logarithmic regression. This comparison was executed using the remaining 24 data points (20% of the dataset) for rigorous evaluation. Employing key statistical metrics such as mean square error (MSE), root mean square error (RMSE), and squared correlation coefficient (<i>R</i><sup>2</sup>), the study systematically demonstrated the superior accuracy of the RES-based method compared to other approaches. In conclusion, the outcomes strongly support the efficacy of the RES method in predicting roof fall rates, not only in the specific case studied but also indicating promise for its application in other underground coal projects. This underscores the potential of the RES method as a reliable and versatile tool for forecasting roof fall rates in the complex and critical context of underground coal mining.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"28 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140168311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}