Studies for Extraction and Separation of Rare Earth Elements by Adsorption from Wastewater: A Review

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Amru Daulay, Lukman Hakim Nasution, Widi Astuti, Fika Rofiek Mufakhir, Slamet Sumardi, Hendra Prasetia
{"title":"Studies for Extraction and Separation of Rare Earth Elements by Adsorption from Wastewater: A Review","authors":"Amru Daulay, Lukman Hakim Nasution, Widi Astuti, Fika Rofiek Mufakhir, Slamet Sumardi, Hendra Prasetia","doi":"10.1007/s42461-024-00974-8","DOIUrl":null,"url":null,"abstract":"<p>Rare earth elements (REEs) are utilized in numerous disciplines, including chemical engineering, the nuclear industry, metallurgy, medicine, electronics, and computer technology. Recycling products containing and extracting them from effluent is necessary to satisfy the rising demand for these elements. Some studies investigate the adsorption of rare earth elements from dilute aqueous solutions to remove them from effluent. Based on the results of this study, it can be concluded that lab tests demonstrate high adsorption capacities, which vary widely depending on the adsorption type and conditions. The Langmuir, Freundlich, and Temkin isotherms usually describe adsorption isotherms. In addition, the finest models for describing adsorption kinetics are pseudo-second-order and pseudo-first-order models. The thermodynamic parameters, such as the changes in free energy, enthalpy, and entropy, provide additional information regarding the energy changes. Additional research is required to develop environmentally friendly adsorbents that can be used to remove REEs from actual mine wastewater.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-00974-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rare earth elements (REEs) are utilized in numerous disciplines, including chemical engineering, the nuclear industry, metallurgy, medicine, electronics, and computer technology. Recycling products containing and extracting them from effluent is necessary to satisfy the rising demand for these elements. Some studies investigate the adsorption of rare earth elements from dilute aqueous solutions to remove them from effluent. Based on the results of this study, it can be concluded that lab tests demonstrate high adsorption capacities, which vary widely depending on the adsorption type and conditions. The Langmuir, Freundlich, and Temkin isotherms usually describe adsorption isotherms. In addition, the finest models for describing adsorption kinetics are pseudo-second-order and pseudo-first-order models. The thermodynamic parameters, such as the changes in free energy, enthalpy, and entropy, provide additional information regarding the energy changes. Additional research is required to develop environmentally friendly adsorbents that can be used to remove REEs from actual mine wastewater.

Abstract Image

通过吸附从废水中提取和分离稀土元素的研究:综述
稀土元素 (REE) 广泛应用于化学工程、核工业、冶金、医药、电子和计算机技术等领域。为了满足对稀土元素日益增长的需求,有必要回收含有稀土元素的产品并从废水中提取稀土元素。一些研究调查了稀土元素在稀水溶液中的吸附情况,以从污水中去除稀土元素。根据这项研究的结果,可以得出这样的结论:实验室测试显示了很高的吸附能力,但根据吸附类型和条件的不同,吸附能力也有很大差异。Langmuir、Freundlich 和 Temkin 等温线通常用来描述吸附等温线。此外,描述吸附动力学的最佳模型是伪二阶模型和伪一阶模型。热力学参数,如自由能、焓和熵的变化,提供了有关能量变化的更多信息。要开发可用于去除实际矿山废水中的 REEs 的环境友好型吸附剂,还需要进行更多的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信