{"title":"厚冲积层力学特征对薄基岩深部沉积地表沉降特征的影响研究","authors":"Shanxi Wu, Zhaohui Wang, Jialong Li, Haoyu Hu, Bochao An, Jiqing He, Shenyi Zhang","doi":"10.1007/s42461-024-00989-1","DOIUrl":null,"url":null,"abstract":"<p>There are a large number of thick alluvium and thin bedrock deposits at depth in the Henan coal base. The degree of surface mining is high, and the surface environment is seriously damaged. Using indoor experiments, numerical simulation, and field measurement, it is studied the influence of the mechanical properties of thick alluvium on the surface subsidence characteristics of thick alluvium thin bedrock deposits at depth, taking Zhaogu No. 2 coal mine as the research background. The results show that the compressive strength and elastic modulus of the alluvial layer are linearly negatively correlated with the alluvial layer particle size, linearly positively correlated with the confining pressure, and nonlinearly positively correlated with the loading rate. The thickness of the alluvial layer has the greatest influence on the displacement of surface subsidence and the range of surface subsidence. The advancing mining rate of the working face has the greatest influence on the surface horizontal displacement. The mechanical properties of the alluvial layer affect the evolution characteristics of the caving arch and towering roof beam. The influence range of the 11012 working face is about 550 m, <i>β</i> is about 55.5°, and the maximum subsidence rate of the surface is 12 mm/day. The mining process and separation grouting can be adjusted to control the overburden displacement to reduce surface disturbance and protect the surface ecological environment. The research results of this paper can provide a research basis for the study of surface subsidence under similar geological conditions.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"23 8 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Mechanical Characteristics of Thick Alluvium on the Surface Subsidence Features of Thin Bedrock Deposits at Depth\",\"authors\":\"Shanxi Wu, Zhaohui Wang, Jialong Li, Haoyu Hu, Bochao An, Jiqing He, Shenyi Zhang\",\"doi\":\"10.1007/s42461-024-00989-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There are a large number of thick alluvium and thin bedrock deposits at depth in the Henan coal base. The degree of surface mining is high, and the surface environment is seriously damaged. Using indoor experiments, numerical simulation, and field measurement, it is studied the influence of the mechanical properties of thick alluvium on the surface subsidence characteristics of thick alluvium thin bedrock deposits at depth, taking Zhaogu No. 2 coal mine as the research background. The results show that the compressive strength and elastic modulus of the alluvial layer are linearly negatively correlated with the alluvial layer particle size, linearly positively correlated with the confining pressure, and nonlinearly positively correlated with the loading rate. The thickness of the alluvial layer has the greatest influence on the displacement of surface subsidence and the range of surface subsidence. The advancing mining rate of the working face has the greatest influence on the surface horizontal displacement. The mechanical properties of the alluvial layer affect the evolution characteristics of the caving arch and towering roof beam. The influence range of the 11012 working face is about 550 m, <i>β</i> is about 55.5°, and the maximum subsidence rate of the surface is 12 mm/day. The mining process and separation grouting can be adjusted to control the overburden displacement to reduce surface disturbance and protect the surface ecological environment. The research results of this paper can provide a research basis for the study of surface subsidence under similar geological conditions.</p>\",\"PeriodicalId\":18588,\"journal\":{\"name\":\"Mining, Metallurgy & Exploration\",\"volume\":\"23 8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining, Metallurgy & Exploration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-00989-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-00989-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Research on the Mechanical Characteristics of Thick Alluvium on the Surface Subsidence Features of Thin Bedrock Deposits at Depth
There are a large number of thick alluvium and thin bedrock deposits at depth in the Henan coal base. The degree of surface mining is high, and the surface environment is seriously damaged. Using indoor experiments, numerical simulation, and field measurement, it is studied the influence of the mechanical properties of thick alluvium on the surface subsidence characteristics of thick alluvium thin bedrock deposits at depth, taking Zhaogu No. 2 coal mine as the research background. The results show that the compressive strength and elastic modulus of the alluvial layer are linearly negatively correlated with the alluvial layer particle size, linearly positively correlated with the confining pressure, and nonlinearly positively correlated with the loading rate. The thickness of the alluvial layer has the greatest influence on the displacement of surface subsidence and the range of surface subsidence. The advancing mining rate of the working face has the greatest influence on the surface horizontal displacement. The mechanical properties of the alluvial layer affect the evolution characteristics of the caving arch and towering roof beam. The influence range of the 11012 working face is about 550 m, β is about 55.5°, and the maximum subsidence rate of the surface is 12 mm/day. The mining process and separation grouting can be adjusted to control the overburden displacement to reduce surface disturbance and protect the surface ecological environment. The research results of this paper can provide a research basis for the study of surface subsidence under similar geological conditions.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.