Bin Ji, Sharon Pedraza, Aaron Noble, Wencai Zhang, Sidi Deng, Subodh Das, Michael Van Brunt
{"title":"A Preliminary Study on the Beneficiation and Recovery of Valuable Metals from Municipal Solid Waste Incineration Bottom Ash","authors":"Bin Ji, Sharon Pedraza, Aaron Noble, Wencai Zhang, Sidi Deng, Subodh Das, Michael Van Brunt","doi":"10.1007/s42461-024-00966-8","DOIUrl":null,"url":null,"abstract":"<p>In this study, a MSWI bottom ash sample was assessed to evaluate the feasibility of various physical beneficiation processes in concentrating valuable elements prior to chemical leaching. The raw sample was initially assayed to determine the content and economic value of various metals present in the material. The potential recoverable value (PRV) of the sample was calculated, and the result showed that the total PRV of the sample was 483 $/ton, with Ti, Sc, Fe, Cu, and Zn being the most valuable metals. Next, various physical separation processes, including size fractionation, froth flotation, magnetic separation, and gravity separation, were conducted to determine the extent to which the valuable elements can be concentrated. The results were compiled into an element-by-beneficiation enrichment ratio (er) matrix that was used to develop suitable beneficiation flowsheets for further consideration. The result clearly show delineation of four products, including a Fe-rich product that can be isolated by magnetic separation (er = 5.0), a Cu/Zn-rich product that can be isolated by flotation (er = 5.3 to 9.4), a Sc-rich product that can be isolated by gravity separation (er = 0.6), and a Ti–rich product that is produced in the residue. Lastly, the leachability of valuable elements from the bottom ash sample was determined by acid leaching tests. The results indicated that it is viable to employ hydrometallurgical methods to recover and purify the valuable metals. This work provides a reference for the recovery of valuable metals from MSWI bottom ash from both the technical and economic aspects.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"23 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-00966-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a MSWI bottom ash sample was assessed to evaluate the feasibility of various physical beneficiation processes in concentrating valuable elements prior to chemical leaching. The raw sample was initially assayed to determine the content and economic value of various metals present in the material. The potential recoverable value (PRV) of the sample was calculated, and the result showed that the total PRV of the sample was 483 $/ton, with Ti, Sc, Fe, Cu, and Zn being the most valuable metals. Next, various physical separation processes, including size fractionation, froth flotation, magnetic separation, and gravity separation, were conducted to determine the extent to which the valuable elements can be concentrated. The results were compiled into an element-by-beneficiation enrichment ratio (er) matrix that was used to develop suitable beneficiation flowsheets for further consideration. The result clearly show delineation of four products, including a Fe-rich product that can be isolated by magnetic separation (er = 5.0), a Cu/Zn-rich product that can be isolated by flotation (er = 5.3 to 9.4), a Sc-rich product that can be isolated by gravity separation (er = 0.6), and a Ti–rich product that is produced in the residue. Lastly, the leachability of valuable elements from the bottom ash sample was determined by acid leaching tests. The results indicated that it is viable to employ hydrometallurgical methods to recover and purify the valuable metals. This work provides a reference for the recovery of valuable metals from MSWI bottom ash from both the technical and economic aspects.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.