{"title":"Analysis of In-Situ Creep Behavior of Coal Mine Waste Dumps Using GBInSAR for Landslide Failure Prediction","authors":"Anup Tiwari, Monika Tewari, Khanindra Pathak, Bibhuti Bhusan Mandal","doi":"10.1007/s42461-024-01077-0","DOIUrl":"https://doi.org/10.1007/s42461-024-01077-0","url":null,"abstract":"<p>Landslides pose significant geohazards in both mining and natural slopes, necessitating effective temporal prediction of failure for slope-scale mitigation. The conventional understanding of creep behavior, derived from controlled laboratory testing, often falls short in explaining the dynamic in-situ creep characteristics of heterogeneous soil slopes. This study presents in-situ creep assessments through continuous displacement monitoring of an inactive coal mine waste dump, employing Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR). This study explores the applicability of the inverse velocity (IV) method for landslide failure prediction. Additionally, it evaluates the performance of two widely adopted filters, namely, moving average and exponential smoothing. In contrast to prior findings, the study reveals a distinct pattern in the IV vs. time curve, transitioning from an initial linear trend to a new steady-state. Notably, the research highlights instances of false predictions, underscoring the importance of considering potential stick–slip behavior, particularly in dump slopes. Furthermore, the findings on tension crack formation and propagation offer insights crucial for selecting an appropriate constitutive model tailored to the characteristics of the waste dump. The findings from this study contribute valuable knowledge to the field of slope stability assessment and aid in refining the methodologies for accurate landslide failure prediction in complex, real-world scenarios.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"8 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eugene A. Gyawu, Danise A. Baker, Kwame Awuah-Offei
{"title":"An Assessment of Interventions to Improve Underground Coal Miners’ Ability to Self-Escape Using Human-Centered Design Methods","authors":"Eugene A. Gyawu, Danise A. Baker, Kwame Awuah-Offei","doi":"10.1007/s42461-024-01067-2","DOIUrl":"https://doi.org/10.1007/s42461-024-01067-2","url":null,"abstract":"<p>The literature lacks analysis of human systems integration approaches for self-escape in mining. This research aimed to gather feedback from miners to identify technological interventions that could support their ability to perform critical self-escape tasks. We solicited feedback on the usefulness of 21 proposed interventions to improve confidence in self-escape knowledge, skills, and abilities (KSAs) and evaluate relationships between the interventions and specific demographic parameters of miners. We also analyzed decisions by miners to shelter in place or escape in an underground coal mine fire emergency in relation to how miners’ decisions affect the perceived usefulness of the interventions. This research utilizes a novel scenario-based survey to collect feedback from 116 miners. The results show that the miners ranked interventions related to self-contained self-rescuers (SCSRs) and refuge alternatives (RAs) as the most useful. Surprisingly, the demographic variables we examined did not differentially affect the perceived usefulness of the 21 interventions. Interestingly, participants who reported they would shelter-in-place (~ 48%) also thought all 21 interventions were more useful, with 11 out of 21 being statistically significantly higher at a 0.05 significance level. Future research will directly apply the results of this study to a series of proof of concept and prototype studies aimed at improving self-escape interventions through human systems integration.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"23 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Jiang, Yi Qin, Ning Lu, Shimei Dai, Zhihao Zhang
{"title":"Study on the Flame Propagation Characteristics of Multi-point Methane Explosions in Long and Narrow Confined Spaces","authors":"Wen Jiang, Yi Qin, Ning Lu, Shimei Dai, Zhihao Zhang","doi":"10.1007/s42461-024-01075-2","DOIUrl":"https://doi.org/10.1007/s42461-024-01075-2","url":null,"abstract":"<p>To investigate the injuries caused by multi-point gas deflagration accidents within the complex environment of a mine, this paper conducts a numerical study of the flame propagation of methane explosions in a ventilation door and supporting structures. The effects of ignition source position, number, and changes in the state of the ventilation door were analyzed based on explosion simulation with three different ignition source settings. The results show that the interplay between the increased number of ignition sources and the confining effect of the flame significantly affected the structural evolution of the flame. After crossing the ventilation doors, the flame structure transitions to forms such as umbrella flame, columnar flame, tip flame, or twisted flame. In the early stages of flame propagation, reflected pressure waves are the main cause of changes in flame propagation velocity. As the reaction proceeds, the cause changes to an interaction between the turbulent flame, the chemical reaction, and the reflected pressure wave. The speed of a single ignition source passing through the ventilation door was 172.5 m/s, while the speeds of two ignition sources at increasing distances were 146.6 m/s and 115 m/s, respectively. Therefore, the speed of the flame passing through the ventilation door is inversely proportional to the number of ignition sources and inversely proportional to the distance between the ignition sources. Additionally, with two-point fire sources, the more distorted the vortex distribution, the more twisted the flame propagation shape. This study addresses the lack of research on the flame propagation characteristics of methane explosions in long and narrow confined spaces, which is crucial for gas explosion risk prevention.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"54 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Challenges in the Battery Raw Materials Supply Chain: Achieving Decarbonisation from a Mineral Extraction Perspective","authors":"Landon Jackson, C. Meinke, R. Chandramohan","doi":"10.1007/s42461-024-01070-7","DOIUrl":"https://doi.org/10.1007/s42461-024-01070-7","url":null,"abstract":"<p>Understanding constraints within the raw battery material supply chain is essential for making informed decisions that will ensure the battery industry’s future success. The primary limiting factor for long-term mass production of batteries is mineral extraction constraints. These constraints are highlighted in a first-fill analysis which showed significant risks if lithium-ion batteries are utilised to fully support vehicle electrification and intermittent energy storage. Nickel, lithium, cobalt, and graphite reserves risk 100% depletion with significant consumption of known resources. Furthermore, over 700 new critical mineral mines will need to be developed to meet the required production rates for decarbonisation by 2050. Demand for critical minerals will out-pace mine development timelines even as improvements are made to battery energy density and compositions. Governments and the private sector need to align themselves on decarbonisation goals to establish cooperative agreements on the critical mineral supply chain by reducing the barriers to entry and increasing exploration efforts. Additional measures must also be taken to reduce the demand for critical minerals. Policy such as incentivising public transportation and biking infrastructure can be exploited to drastically reduce the mineral demand placed on the mining industry.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"33 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing Tunnel Excavation: Intelligent Algorithms for Accurate Overbreak Prediction","authors":"Hadi Fattahi, Hamid Reza Nejati, Hossein Ghaedi","doi":"10.1007/s42461-024-01074-3","DOIUrl":"https://doi.org/10.1007/s42461-024-01074-3","url":null,"abstract":"<p>Excavating tunnels has become a widespread practice in the modern world, driven by the need for efficient transportation, subterranean storage, and mineral supply. One challenge encountered during tunnel excavation is the overbreak (OB) phenomenon, particularly prominent when utilizing drilling and blasting techniques. OB poses a risk by increasing operational expenses and compromising workplace safety. Therefore, accurately predicting the occurrence of OB during tunnel excavation is crucial. While various methods exist to forecast OB, traditional approaches like experimental, analytical, numerical, and regression methods face limitations due to uncertainties in geological and geotechnical parameters. In this paper, the use of Teaching–Learning-Based Optimization (TLBO) and Firefly (FF) algorithms is proposed to predict OB, aiming to fully comprehend the physical and mechanical characteristics of the rock mass while considering uncertainties and optimizing project completion in terms of cost and time. The model was constructed using data from three case studies: an Indian mine; the Azad tunnel on the Tehran-North route in Alborz, Iran; and the underground coal mine Tarzareh, comprising 217 data points. Parameters affecting the OB phenomenon in this study include rock mass rating (RMR), specific drilling (SD), perimeter holes powder factor (PPF), and spacing to burden ratio of contour holes (S/B). The dataset was divided into two groups: 80% for training the model and 20% for testing the relationship. To evaluate the model, statistical indices such as squared correlation coefficient (<i>R</i><sup>2</sup>), root mean square error (RMSE), and mean square error (MSE) were used. The validation results indicated that the TLBO and FF algorithms performed satisfactorily, demonstrating high accuracy and low error. This suggests that engineers, scientists, and practitioners can benefit from employing intelligent approaches in mining and rock mechanics-related operations, utilizing the accurate model generated by these algorithms.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"2 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cassandra L. Hoebbel, Jennica L. Bellanca, Jonathan K. Hrica
{"title":"Lessons Learned From Haul Truck Operator Near-Miss Events: Use of the Critical Decision Method to Identify Strategies to Improve Operator Safety in Mining","authors":"Cassandra L. Hoebbel, Jennica L. Bellanca, Jonathan K. Hrica","doi":"10.1007/s42461-024-01066-3","DOIUrl":"https://doi.org/10.1007/s42461-024-01066-3","url":null,"abstract":"<p>Accidents involving powered haulage and mobile equipment such as haul trucks often account for the greatest number of fatalities in the mining industry each year. Despite previous analyses that have identified root causes and other contributing factors, there is still a need to better understand the events leading up to these types of accidents, what lessons may be learned, and what strategies can be employed to prevent fatal accidents from occurring. This study examines naturalistic decision-making (NDM) using the critical decision method (CDM). The CDM is a retrospective interview approach used to explore time-limited, high-stakes decision-making that has not been often used in the mining industry. In this study, the CDM is used to obtain more information about what happens prior to, during, and after a potentially fatal situation such as a near-miss event, loss of control, or minor accident involving equipment damage. Researchers captured first-hand accounts from 21 haul truck operators involved in near-miss events from mine sites of various sizes and commodities throughout the USA. These accounts provide rich and detailed narratives from the perspective of haul truck operators themselves and reveal insights into what decisions haul truck operators make, what sensory cues they perceive, and what strategies they employ during challenging and non-routine situations so that haul truck operators can be better prepared in the future. Themes critical to operator decision- making emerged from the data with the top three including, <i>know your truck</i>, <i>situational awareness</i>, and <i>safety first</i>. These themes suggest that haul truck operators need to have a mastery level understanding of how their truck works in order to effectively react, that haul truck operators need to maintain an understanding of conditions and their environment, and that haul truck operators should prioritize safety when making decisions. To support haul truck knowledge acquisition and retention, mine operators may consider providing more detailed and hands on training including practice time in a variety of conditions. To support situational awareness, mine operators may consider investing in collision warning technologies and emphasizing good communication practices. Lastly, mine operators may consider continually emphasizing safety and their commitment to safe practices to help all mine workers internalize safety as a value, thereby reducing or eliminating related conflicts in decision- making. These results, along with potential solutions offered by study participants, can help to inform future research, raise awareness about hidden hazards, and build more creative interventions and realistic training scenarios for use by the industry to address haul truck safety issues.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"124 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Dynamic Recognition Method of Rock Burst Precursor Information Based on Adaptive Denoising and Object Detection","authors":"Shenglei Zhao, Jinxin Wang, Enyuan Wang, Qiming Zhang, Huihan Yang, Zhonghui Li","doi":"10.1007/s42461-024-01055-6","DOIUrl":"https://doi.org/10.1007/s42461-024-01055-6","url":null,"abstract":"<p>Acoustic emission (AE) and electromagnetic radiation (EMR) can reflect the precursor information of rock burst and play important roles in rock burst monitoring, early warning, and prevention. However, the existing denoising methods of AE and EMR monitoring signals are poor, and the recognition of precursor information lacks comprehensiveness, accuracy, and real-time. This paper presents a novel method combining adaptive denoising and object detection to realize dynamic recognition of rock burst precursor information. Successive Variational Mode Decomposition (SVMD) adaptively decomposed the AE and EMR monitoring signals such as pulse and intensity into different mode components and Kalman Filter (KF) performed on each mode component to eliminate redundant noise. Furthermore, the YOLOX object detection algorithm recognizes the precursor information in the time–frequency domain after noise removal, including the time interval, frequency band, and energy. The case study illustrates that the precursor response of the AE and EMR monitoring signal in time–frequency domain is highlighted by denoising, and the average accuracy of different types of precursor recognition reaches 96%. Finally, the consistency of the identified precursor information and field records shows the feasibility and effectiveness of the method, which has practical guiding significance for improving the level of rock burst prevention.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"35 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comparative Experimental Analysis of the Effect of Spiral Geometry on the Separation of Fine Chromite Particles. Part 1: Potential Downstream Impacts","authors":"Damla Izerdem","doi":"10.1007/s42461-024-01063-6","DOIUrl":"https://doi.org/10.1007/s42461-024-01063-6","url":null,"abstract":"<p>This study focuses on examining the separation performance of spirals employed in a classified fine-sized (− 200 + 2 5 µm) chromite ore. Dwindling global reserves of high-grade chromium ores and dispersing minerals in the form of fine particles make it attractive to find alternative and efficient methods for enriching these minerals in an economically as well as environmentally sustainable manner. Experimental tests were conducted on three spiral concentrators with distinct geometries. The effects of pulp density, flowrate, and splitter blade positions on the separation efficiency and enrichment ratios were thoroughly examined. The separation variables were comparatively assessed, and response surface method (RSM) was employed for optimization. The results indicated that optimal separation performance was achieved using a small diameter spiral (<i>Ø</i>: 60 cm), whereas the least effective separation occurred in a large diameter spiral (<i>Ø</i>: 100 cm) with a lower pitch angle. The findings revealed that high flowrates and pulp densities adversely affected the separation efficiencies, and the positions of the splitters significantly impacted the quality of the obtained products.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"389 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdou Azizi Youpoungam, Sadiye Kantarcı, İbrahim Alp
{"title":"Characterization and Reprocessing of Artisanal and Small-Scale Gold Mine Tailings","authors":"Abdou Azizi Youpoungam, Sadiye Kantarcı, İbrahim Alp","doi":"10.1007/s42461-024-01059-2","DOIUrl":"https://doi.org/10.1007/s42461-024-01059-2","url":null,"abstract":"<p>Millions of tons of solid waste are generated by artisanal and small-scale gold mining in several regions of the world. This study focused on the tailings from the Abu Hamad artisanal gold mine located in northeastern Sudan. The results of the analyses carried out showed that this amalgam waste contained on average 5.5 g/ton of gold, 50 g/ton of mercury, 3.3 g/ton of silver, and 191 g/ton of copper. The particle size distribution was between − 10 and + 300 µm, and the average grain size was about 65 µm. Metal distributions showed that gold and mercury grades increased in fine-grained size fractions. X-ray diffraction analyses showed that quartz is the main constituent mineral phase of these residues. The presence of gold, mercury, and other accessory minerals such as sulfide and oxide minerals was revealed by the SEM–EDS. Microscopic analysis showed that majority of gold particles in these tailings are free while few others were occluded in quartz. The gravity tests carried out showed that the best gold recovery result was 47.18%. Bench scale stirred cyanide leaching tests showed that gold, mercury, copper, and silver can be recovered at 90%, 71%, 32%, and 22%, respectively, in 24 h. These high gold recoveries show that these tailings offer a possible commercial secondary resource for gold mining. These wastes contain high mercury grades, which can cause various environmental and public health problems, that is why new environmentally friendly treatment techniques should be developed to recover gold and mercury from these tailings.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"26 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philani Larrance Ngwenyama, Ronald C. W. Webber-Youngman
{"title":"A Review of the Applications of Through-the-Earth (TTE) Communication Systems for Underground Mines","authors":"Philani Larrance Ngwenyama, Ronald C. W. Webber-Youngman","doi":"10.1007/s42461-024-01056-5","DOIUrl":"https://doi.org/10.1007/s42461-024-01056-5","url":null,"abstract":"<p>Underground mining accidents have the potential of leaving miners trapped in unknown and life-threatening locations for an extended period of time. The lives of the trapped and unaccounted-for miners are at risk and require emergency rescue. But, the primary tracking systems are highly susceptible to damage during accidents and are most likely to be defunct and inoperable post-accident. This prompted the need for a robust and reliable post-accident communication and locator system. Subsequently, the through-the-earth (TTE) communication systems were developed and tested in underground mines. Under ideal conditions, these systems are capable of post-accident full-duplex two-way voice, text, and data communication and fingerprint detection of the geolocations of the trapped miners. This is achieved through a wireless link established by the transmission of electromagnetic and seismic waves between surface and underground, even in challenged underground environments. Unlike the primary tracking systems, the TTE communication systems do not require extensive shaft-to-workplace backbone infrastructure. This has made the TTE systems to be less susceptible to damage and therefore suitable for post-accident communication. Instead, the Earth’s crust acts as the signal transmission medium which forms an uplink and downlink communication path. This is achieved by injecting an electric current into the ground using electrodes, by transmitting magnetic fields from a radiating loop antenna, or by inducing fingerprint geolocations using seismic waves. Range and data rates are the critical requirements for the effectiveness of these systems and are dependent on factors such as the antenna design, frequency, and rock properties. This study provides a review of the applications of the different types of TTE communication systems, their evolution, factors that affect them, and techniques for improving their efficiencies and capabilities. These systems present the mining industry with an opportunity to improve safety by providing post-accident communication and locating trapped miners as quickly as possible. This will improve their survival chances and ultimately reduce fatality rates in the mining industry.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"2019 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}