{"title":"伊朗萨里古奈金矿床利用无监督机器学习对原生地球化学晕进行空间聚类","authors":"Mohammad Hossein Aghahadi, Golnaz Jozanikohan, Omid Asghari, Keyumars Anvari, Sajjad Talesh Hosseini","doi":"10.1007/s42461-024-01065-4","DOIUrl":null,"url":null,"abstract":"<p>Identifying geochemical halos is critical in locating ore deposits and detecting deeper anomalies. This study presents an approach that combines unsupervised random forests and clustering large applications algorithms to identify intricate patterns in a borehole set of 29 elements data in a suspected gold mineralization area in Iran. The raw geochemical data goes through a log-ratio transformation, followed by staged factor analysis to identify ten main elements. The proposed methodology separated the ten main elements into three distinct halos. The clustering process was validated using various statistical parameters to substantiate the approach’s effectiveness in handling data outliers. The Sequential Indicator Simulation method was used as a geostatistical tool to perform conditional simulation of front, near-ore, and tail halos. Multivariate modeling revealed that the primary halos exhibit a specific spatial pattern encompassing the ore deposit, reinforcing the possibility of a more profound anomaly. The three-dimensional (3D) results obtained from this investigation were subsequently compared with existing geological reports and a comparative method (K-means). This comparison revealed the successful detection of the near-ore halo within the subsurface, extending from the Earth’s surface to a depth of 200 m. Existing geological reports and databases confirm that this halo is strongly associated with the oxide zone.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Clustering of Primary Geochemical Halos Using Unsupervised Machine Learning in Sari Gunay Gold Deposit, Iran\",\"authors\":\"Mohammad Hossein Aghahadi, Golnaz Jozanikohan, Omid Asghari, Keyumars Anvari, Sajjad Talesh Hosseini\",\"doi\":\"10.1007/s42461-024-01065-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifying geochemical halos is critical in locating ore deposits and detecting deeper anomalies. This study presents an approach that combines unsupervised random forests and clustering large applications algorithms to identify intricate patterns in a borehole set of 29 elements data in a suspected gold mineralization area in Iran. The raw geochemical data goes through a log-ratio transformation, followed by staged factor analysis to identify ten main elements. The proposed methodology separated the ten main elements into three distinct halos. The clustering process was validated using various statistical parameters to substantiate the approach’s effectiveness in handling data outliers. The Sequential Indicator Simulation method was used as a geostatistical tool to perform conditional simulation of front, near-ore, and tail halos. Multivariate modeling revealed that the primary halos exhibit a specific spatial pattern encompassing the ore deposit, reinforcing the possibility of a more profound anomaly. The three-dimensional (3D) results obtained from this investigation were subsequently compared with existing geological reports and a comparative method (K-means). This comparison revealed the successful detection of the near-ore halo within the subsurface, extending from the Earth’s surface to a depth of 200 m. Existing geological reports and databases confirm that this halo is strongly associated with the oxide zone.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01065-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01065-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Spatial Clustering of Primary Geochemical Halos Using Unsupervised Machine Learning in Sari Gunay Gold Deposit, Iran
Identifying geochemical halos is critical in locating ore deposits and detecting deeper anomalies. This study presents an approach that combines unsupervised random forests and clustering large applications algorithms to identify intricate patterns in a borehole set of 29 elements data in a suspected gold mineralization area in Iran. The raw geochemical data goes through a log-ratio transformation, followed by staged factor analysis to identify ten main elements. The proposed methodology separated the ten main elements into three distinct halos. The clustering process was validated using various statistical parameters to substantiate the approach’s effectiveness in handling data outliers. The Sequential Indicator Simulation method was used as a geostatistical tool to perform conditional simulation of front, near-ore, and tail halos. Multivariate modeling revealed that the primary halos exhibit a specific spatial pattern encompassing the ore deposit, reinforcing the possibility of a more profound anomaly. The three-dimensional (3D) results obtained from this investigation were subsequently compared with existing geological reports and a comparative method (K-means). This comparison revealed the successful detection of the near-ore halo within the subsurface, extending from the Earth’s surface to a depth of 200 m. Existing geological reports and databases confirm that this halo is strongly associated with the oxide zone.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.