Khaled E. Yassin, Mahmoud A. Mohamed, Mohamed G. Khalifa, Ayman A. Hagrass
{"title":"使用 CTAB 作为胺捕收剂改进长石浮选(第二部分)","authors":"Khaled E. Yassin, Mahmoud A. Mohamed, Mohamed G. Khalifa, Ayman A. Hagrass","doi":"10.1007/s42461-024-01084-1","DOIUrl":null,"url":null,"abstract":"<p>In this study, feldspar ore was successfully enriched using a two-stage process. Initially, dry magnetic separation was employed to remove iron oxide, followed by cationic flotation to eliminate gangue minerals containing free silica. A feed sample with a size fraction of (− 0.25 + 0.053) mm, pre-treated by attrition scrubbing and dry high-intensity magnetic separation (cleaned twice), was used for flotation. Cetyltrimethylammonium bromide (CTAB) served as a cationic collector for feldspar, while hydrofluoric acid (HF) acted as a depressant for quartz at a pH of 2.5–3. Factors affecting the flotation process were investigated. The flotation resulted in a concentrate with 64.75% SiO<sub>2</sub>, 21.00% Al<sub>2</sub>O<sub>3</sub>, 0.08% Fe<sub>2</sub>O<sub>3</sub>, 4.00% Na<sub>2</sub>O, 10.22% K<sub>2</sub>O, and 94.71% feldspar, compared to the feed sample, which contained 76.03% SiO<sub>2</sub>, 14.73% Al<sub>2</sub>O<sub>3</sub>, 0.08% Fe<sub>2</sub>O<sub>3</sub>, 2.99% Na<sub>2</sub>O, 4.77% K<sub>2</sub>O, and 59.43% feldspar. Overall, the results indicate that using CTAB as a feldspar collector, combined with a small amount of HF as a quartz depressant in acidic conditions, effectively reduces chemical consumption when compared to alternative methods for treating similar feldspar samples.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Feldspar Flotation Using CTAB As Amine Collector (Part Two)\",\"authors\":\"Khaled E. Yassin, Mahmoud A. Mohamed, Mohamed G. Khalifa, Ayman A. Hagrass\",\"doi\":\"10.1007/s42461-024-01084-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, feldspar ore was successfully enriched using a two-stage process. Initially, dry magnetic separation was employed to remove iron oxide, followed by cationic flotation to eliminate gangue minerals containing free silica. A feed sample with a size fraction of (− 0.25 + 0.053) mm, pre-treated by attrition scrubbing and dry high-intensity magnetic separation (cleaned twice), was used for flotation. Cetyltrimethylammonium bromide (CTAB) served as a cationic collector for feldspar, while hydrofluoric acid (HF) acted as a depressant for quartz at a pH of 2.5–3. Factors affecting the flotation process were investigated. The flotation resulted in a concentrate with 64.75% SiO<sub>2</sub>, 21.00% Al<sub>2</sub>O<sub>3</sub>, 0.08% Fe<sub>2</sub>O<sub>3</sub>, 4.00% Na<sub>2</sub>O, 10.22% K<sub>2</sub>O, and 94.71% feldspar, compared to the feed sample, which contained 76.03% SiO<sub>2</sub>, 14.73% Al<sub>2</sub>O<sub>3</sub>, 0.08% Fe<sub>2</sub>O<sub>3</sub>, 2.99% Na<sub>2</sub>O, 4.77% K<sub>2</sub>O, and 59.43% feldspar. Overall, the results indicate that using CTAB as a feldspar collector, combined with a small amount of HF as a quartz depressant in acidic conditions, effectively reduces chemical consumption when compared to alternative methods for treating similar feldspar samples.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01084-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01084-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving Feldspar Flotation Using CTAB As Amine Collector (Part Two)
In this study, feldspar ore was successfully enriched using a two-stage process. Initially, dry magnetic separation was employed to remove iron oxide, followed by cationic flotation to eliminate gangue minerals containing free silica. A feed sample with a size fraction of (− 0.25 + 0.053) mm, pre-treated by attrition scrubbing and dry high-intensity magnetic separation (cleaned twice), was used for flotation. Cetyltrimethylammonium bromide (CTAB) served as a cationic collector for feldspar, while hydrofluoric acid (HF) acted as a depressant for quartz at a pH of 2.5–3. Factors affecting the flotation process were investigated. The flotation resulted in a concentrate with 64.75% SiO2, 21.00% Al2O3, 0.08% Fe2O3, 4.00% Na2O, 10.22% K2O, and 94.71% feldspar, compared to the feed sample, which contained 76.03% SiO2, 14.73% Al2O3, 0.08% Fe2O3, 2.99% Na2O, 4.77% K2O, and 59.43% feldspar. Overall, the results indicate that using CTAB as a feldspar collector, combined with a small amount of HF as a quartz depressant in acidic conditions, effectively reduces chemical consumption when compared to alternative methods for treating similar feldspar samples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.