{"title":"Physiological Effects of TolC-Dependent Multidrug Efflux Pumps in Escherichia coli: Impact on Motility and Growth Under Stress Conditions","authors":"Amanda M. Di Maso, Cristian Ruiz","doi":"10.1002/mbo3.70006","DOIUrl":"10.1002/mbo3.70006","url":null,"abstract":"<p>Enterobacteriaceae possess eight TolC-dependent multidrug efflux pumps: AcrAB-TolC, AcrAD-TolC, AcrEF-TolC, MdtEF-TolC, MdtABC-TolC, EmrAB-TolC, EmrYK-TolC, and MacAB-TolC, which efflux bile salts, antibiotics, metabolites, or other compounds. However, our understanding of their physiological roles remains limited, especially for less-studied pumps like EmrYK-TolC. In this study, we tested the effects on swimming motility and growth under stress conditions of <i>Escherichia coli</i> mutants individually deleted for each inner-membrane transporter component of all eight TolC-dependent pumps, a mutant deleted for the AcrB-accessory protein AcrZ, and a mutant simultaneously deleted for all eight pumps (Δ<i>tolC</i>). We found that all mutants tested, except the Δ<i>emrY</i> and Δ<i>acrZ</i> mutants, displayed increased swimming motility. Additionally, the loss of each individual TolC-dependent pump or AcrZ did not reduce growth and sometimes even enhanced it compared to the parental strain under various growth conditions: temperature (LB at 25, 30, 37, and 42°C), pH (LB at pH 6.0, 7.4, and 9.0; and LB buffered to pH 6.0, 7.4, and 8.25), LB with limited air exchange, and nutritional stress (M9-glucose or M9-glycerol). In contrast, the Δ<i>tolC</i> mutant grew significantly slower than the parental strain under all conditions tested except in LB-TRIS pH 7.4 and LB with limited air exchange. Overall, these findings indicate that while individual TolC-dependent pumps are generally dispensable for growth under many stress conditions in the absence of antimicrobials, possibly due to their partially overlapping substrate profiles, TolC-dependent efflux is required for maximal growth under most conditions.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 6","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Listeria monocytogenes in the seafood industry: Exploring contamination sources, outbreaks, antibiotic susceptibility and genetic diversity","authors":"Karlene Lambrechts, Diane Rip","doi":"10.1002/mbo3.70003","DOIUrl":"https://doi.org/10.1002/mbo3.70003","url":null,"abstract":"<p>Fish and seafood are rich sources of protein, vitamins, and minerals, significantly contributing to individual health. A global increase in consumption has been observed. <i>Listeria monocytogenes</i> is a known problem in food processing environments and is found in various seafood forms, including raw, smoked, salted, and ready-to-eat. Without heat treatment and given <i>L. monocytogenes</i>' ability to multiply under refrigerated conditions, consuming seafood poses a substantial health hazard, particularly to immunocompromised individuals. Numerous global outbreaks of listeriosis have been linked to various fish products, underscoring the importance of studying <i>L. monocytogenes</i>. Different strains exhibit varying disease-causing abilities, making it crucial to understand and monitor the organism's virulence and resistance aspects for food safety. This paper aims to highlight the genetic diversity of <i>L. monocytogenes</i> found in fish products globally and to enhance understanding of contamination routes from raw fish to the final product.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisa Martinez, Noémie Berg, Cristina Rodriguez, Georges Daube, Bernard Taminiau
{"title":"Influence of microbiota on the growth and gene expression of Clostridioides difficile in an in vitro coculture model","authors":"Elisa Martinez, Noémie Berg, Cristina Rodriguez, Georges Daube, Bernard Taminiau","doi":"10.1002/mbo3.70001","DOIUrl":"https://doi.org/10.1002/mbo3.70001","url":null,"abstract":"<p><i>Clostridioides difficile</i> is an anaerobic, spore-forming, Gram-positive pathogenic bacterium. This study aimed to analyze the effect of two samples of healthy fecal microbiota on <i>C. difficile</i> gene expression and growth using an in vitro coculture model. The inner compartment was cocultured with spores of the <i>C. difficile</i> polymerase chain reaction (PCR)-ribotype 078, while the outer compartment contained fecal samples from donors to mimic the microbiota (FD1 and FD2). A fecal-free plate served as a control (CT). RNA-Seq and quantitative PCR confirmation were performed on the inner compartment sample. Similarities in gene expression were observed in the presence of the microbiota. After 12 h, the expression of genes associated with germination, sporulation, toxin production, and growth was downregulated in the presence of the microbiota. At 24 h, in an iron-deficient environment, <i>C. difficile</i> activated several genes to counteract iron deficiency. The expression of genes associated with germination and sporulation was upregulated at 24 h compared with 12 h in the presence of microbiota from donor 1 (FD1). This study confirmed previous findings that <i>C. difficile</i> can use ethanolamine as a primary nutrient source. To further investigate this interaction, future studies will use a simplified coculture model with an artificial bacterial consortium instead of fecal samples.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The metagenomic landscape of a high-altitude geothermal spring in Tajikistan reveals a novel Desulfurococcaceae member, Zestomicrobium tamdykulense gen. nov., sp. nov","authors":"Munavvara Dzhuraeva, Khursheda Bobodzhanova, Nils-Kåre Birkeland","doi":"10.1002/mbo3.70004","DOIUrl":"10.1002/mbo3.70004","url":null,"abstract":"<p>Metagenomic analysis was conducted to assess the microbial community in the high-altitude Tamdykul geothermal spring in Tajikistan. This analysis yielded six high-quality bins from the members of Thermaceae, Aquificaceae, and Halothiobacillaceae, with a 41.2%, 19.7%, and 18.1% share in the total metagenome, respectively. Minor components included <i>Schleiferia thermophila</i> (1.6%) and members of the archaeal taxa <i>Pyrobaculum</i> (1.2%) and <i>Desulfurococcaceae</i> (0.7%). Further analysis of the metagenome-assembled genome (MAG) from the <i>Desulfurococcaceae</i> family (MAG002) revealed novel taxonomy with only 80.95% closest placement average nucleotide identity value to its most closely related member of the <i>Desulfurococcaceae</i> family, which is part of the <i>Thermoproteota</i> phylum comprising hyperthermophilic members widespread in geothermal environments. MAG002 consisted of 1.3 Mbp, distributed into 48 contigs with 1504 predicted coding sequences, had an average GC content of 41.3%, a completeness and contamination rate of 98.7% and 2.6%, respectively, and branched phylogenetically between the <i>Ignisphaera</i> and <i>Zestosphaera</i> lineages. Digital DNA-DNA hybridization values compared with <i>Ignisphaera aggregans</i> and <i>Zestosphaera tikiterensis</i> were 33.7% and 19.4%, respectively, suggesting that this MAG represented a novel species and genus. Its 16S rRNA gene contained a large 421 bp intron. It encodes a complete gluconeogenesis pathway involving a bifunctional fructose-1,6-bisphosphate phosphatase/aldolase; however, the glycolysis pathway is incomplete. The ribulose monophosphate pathway enzymes could be used for pentose synthesis. MAG002 encodes several hydrogen-evolving hydrogenases, with possible roles as hydrogen sinks during fermentation. We propose the name <i>Zestomicrobium tamdykulense</i> gen. nov. sp. nov. for this organism; it is the first thermophilic genome reported from Tajikistan.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nathanael D. Arnold, Michael Paper, Tobias Fuchs, Nadim Ahmad, Patrick Jung, Michael Lakatos, Katia Rodewald, Bernhard Rieger, Farah Qoura, Martha Kandawa-Schulz, Norbert Mehlmer, Thomas B. Brück
{"title":"High-quality genome of a novel Thermosynechococcaceae species from Namibia and characterization of its protein expression patterns at elevated temperatures","authors":"Nathanael D. Arnold, Michael Paper, Tobias Fuchs, Nadim Ahmad, Patrick Jung, Michael Lakatos, Katia Rodewald, Bernhard Rieger, Farah Qoura, Martha Kandawa-Schulz, Norbert Mehlmer, Thomas B. Brück","doi":"10.1002/mbo3.70000","DOIUrl":"10.1002/mbo3.70000","url":null,"abstract":"<p>Thermophilic cyanobacteria thrive in extreme environments, making their thermoresistant enzymes valuable for industrial applications. Common habitats include hot springs, which act as evolutionary accelerators for speciation due to geographical isolation. The family Thermosynechococcaceae comprises thermophilic cyanobacteria known for their ability to thrive in high-temperature environments. These bacteria are notable for their photosynthetic capabilities, significantly contributing to primary production in extreme habitats. Members of Thermosynechococcaceae exhibit unique adaptations that allow them to perform photosynthesis efficiently at elevated temperatures, making them subjects of interest for studies on microbial ecology, evolution, and potential biotechnological applications. In this study, the genome of a thermophilic cyanobacterium, isolated from a hot spring near Okahandja in Namibia, was sequenced using a PacBio Sequel IIe long-read platform. Cultivations were performed at elevated temperatures of 40, 50, and 55°C, followed by proteome analyses based on the annotated genome. Phylogenetic investigations, informed by the 16S rRNA gene and aligned nucleotide identity (ANI), suggest that the novel cyanobacterium is a member of the family Thermosynechococcaceae. Furthermore, the new species was assigned to a separate branch, potentially representing a novel genus. Whole-genome alignments supported this finding, revealing few conserved regions and multiple genetic rearrangement events. Additionally, 129 proteins were identified as differentially expressed in a temperature-dependent manner. The results of this study broaden our understanding of cyanobacterial adaptation to extreme environments, providing a novel high-quality genome of Thermosynechococcaceae cyanobacterium sp. Okahandja and several promising candidate proteins for expression and characterization studies.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesca Talarico, Bruno Tilocca, Rocco Spagnuolo, Ludovico Abenavoli, Francesco Luzza, Paola Roncada
{"title":"The effects of stress on gut virome: Implications on infectious disease and systemic disorders","authors":"Francesca Talarico, Bruno Tilocca, Rocco Spagnuolo, Ludovico Abenavoli, Francesco Luzza, Paola Roncada","doi":"10.1002/mbo3.1434","DOIUrl":"10.1002/mbo3.1434","url":null,"abstract":"<p>The role of gut microbiota in health and disease is being thoroughly examined in various contexts, with a specific focus on the bacterial fraction due to its significant abundance. However, despite their lower abundance, viruses within the gut microbiota are gaining recognition for their crucial role in shaping the structure and function of the intestinal microbiota, with significant effects on the host as a whole, particularly the immune system. Similarly, environmental factors such as stress are key in modulating the host immune system, which in turn influences the composition of the gut virome and neurological functions through the bidirectional communication of the gut–brain axis. In this context, alterations in the host immune system due to stress and/or dysbiosis of the gut virome are critical factors in the development of both infectious and noninfectious diseases. The molecular mechanisms and correlation patterns between microbial species are not yet fully understood. This literature review seeks to explore the interconnected relationship between stress and the gut virome, with a focus on how this interaction is influenced by the host's immune system. We also discuss how disturbances in this finely balanced system can lead to the onset and/or progression of diseases.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1434","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth Phillips, Katherine Picott, Steffen Kümmel, Olivia Bulka, Elizabeth Edwards, Po-Hsiang Wang, Matthias Gehre, Ivonne Nijenhuis, Barbara S. Lollar
{"title":"Vitamin B12 as a source of variability in isotope effects for chloroform biotransformation by Dehalobacter","authors":"Elizabeth Phillips, Katherine Picott, Steffen Kümmel, Olivia Bulka, Elizabeth Edwards, Po-Hsiang Wang, Matthias Gehre, Ivonne Nijenhuis, Barbara S. Lollar","doi":"10.1002/mbo3.1433","DOIUrl":"10.1002/mbo3.1433","url":null,"abstract":"<p>Carbon and chlorine isotope effects for biotransformation of chloroform by different microbes show significant variability. Reductive dehalogenases (RDase) enzymes contain different cobamides, affecting substrate preferences, growth yields, and dechlorination rates and extent. We investigate the role of cobamide type on carbon and chlorine isotopic signals observed during reductive dechlorination of chloroform by the RDase CfrA. Microcosm experiments with two subcultures of a <i>Dehalobacter</i>-containing culture expressing CfrA—one with exogenous cobamide (Vitamin B<sub>12</sub>, B12<sup>+</sup>) and one without (to drive native cobamide production)—resulted in a markedly smaller carbon isotope enrichment factor (<i>ε</i><sub>C, bulk</sub>) for B12<sup>−</sup> (−22.1 ± 1.9‰) compared to B12<sup>+</sup> (−26.8 ± 3.2‰). Both cultures exhibited significant chlorine isotope fractionation, and although a lower <i>ε</i><sub>Cl, bulk</sub> was observed for B12<sup>−</sup> (−6.17 ± 0.72‰) compared to B12<sup>+</sup> (−6.86 ± 0.77‰) cultures, these values are not statistically different. Importantly, dual-isotope plots produced identical slopes of <i>Λ</i><sub>Cl/C</sub> (<i>Λ</i><sub>Cl/C, B12+</sub> = 3.41 ± 0.15, <i>Λ</i><sub>Cl/C, B12</sub>− = 3.39 ± 0.15), suggesting the same reaction mechanism is involved in both experiments, independent of the lower cobamide bases. A nonisotopically fractionating masking effect may explain the smaller fractionations observed for the B12<sup>−</sup> containing culture.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 4","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1433","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suvra Das, JérÔme Delamare-Deboutteville, Andrew C. Barnes, Oleksandra Rudenko
{"title":"Extraction of high-molecular-weight DNA from Streptococcus spp. for nanopore sequencing in resource-limited settings","authors":"Suvra Das, JérÔme Delamare-Deboutteville, Andrew C. Barnes, Oleksandra Rudenko","doi":"10.1002/mbo3.1432","DOIUrl":"10.1002/mbo3.1432","url":null,"abstract":"<p>The long-read sequencing platform MinION, developed by Oxford Nanopore Technologies, enables the sequencing of bacterial genomes in resource-limited settings, such as field conditions or low- and middle-income countries. For this purpose, protocols for extracting high-molecular-weight DNA using nonhazardous, inexpensive reagents and equipment are needed, and some methods have been developed for gram-negative bacteria. However, we found that without modification, these protocols are unsuitable for gram-positive <i>Streptococcus</i> spp., a major threat to fish farming and food security in low- and middle-income countries. Multiple approaches were evaluated, and the most effective was an extraction method using lysozyme, sodium dodecyl sulfate, and proteinase K for lysis of bacterial cells and magnetic beads for DNA recovery. We optimized the method to consistently achieve sufficient yields of pure high-molecular-weight DNA with minimal reagents and time and developed a version of the protocol which can be performed without a centrifuge or electrical power. The suitability of the method was verified by MinION sequencing and assembly of 12 genomes of epidemiologically diverse fish-pathogenic <i>Streptococcus iniae</i> and <i>Streptococcus agalactiae</i> isolates. The combination of effective high-molecular-weight DNA extraction and MinION sequencing enabled the discovery of a naturally occurring 15 kb low-copy number mobilizable plasmid in <i>S. iniae</i>, which we name pSI1. We expect that our resource-limited settings-adapted protocol for high-molecular-weight DNA extraction could be implemented successfully for similarly recalcitrant-to-lysis gram-positive bacteria, and it represents a method of choice for MinION-based disease diagnostics in low- and middle-income countries.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 4","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1432","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential association of key bacterial groups with diatoms and Phaeocystis spp. during spring blooms in the Southern Ocean","authors":"Nyree J. West, Marine Landa, Ingrid Obernosterer","doi":"10.1002/mbo3.1428","DOIUrl":"10.1002/mbo3.1428","url":null,"abstract":"<p>Interactions between phytoplankton and heterotrophic bacteria significantly influence the cycling of organic carbon in the ocean, with many of these interactions occurring at the micrometer scale. We explored potential associations between specific phytoplankton and bacteria in two size fractions, 0.8–3 µm and larger than 3 µm, at three naturally iron-fertilized stations and one high nutrient low chlorophyll station in the Southern Ocean. The composition of phytoplankton and bacterial communities was determined by sequencing the <i>rbcL</i> gene and 16S rRNA gene from DNA and RNA extracts, which represent presence and potential activity, respectively. Diatoms, particularly <i>Thalassiosira</i>, contributed significantly to the DNA sequences in the larger size fractions, while haptophytes were dominant in the smaller size fraction. Correlation analysis between the most abundant phytoplankton and bacterial operational taxonomic units revealed strong correlations between <i>Phaeocystis</i> and picoeukaryotes with SAR11, SAR116, <i>Magnetospira</i>, and <i>Planktomarina</i>. In contrast, most <i>Thalassiosira</i> operational taxonomic units showed the highest correlations with <i>Polaribacter</i>, <i>Sulfitobacteria</i>, <i>Erythrobacter</i>, and <i>Sphingobium</i>, while <i>Fragilariopsis</i>, <i>Haslea</i>, and <i>Thalassionema</i> were correlated with OM60, <i>Fluviicola</i>, and <i>Ulvibacter</i>. Our in-situ observations suggest distinct associations between phytoplankton and bacterial taxa, which could play crucial roles in nutrient cycling in the Southern Ocean.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 4","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Kattel, Valter Aro, Petri-Jaan Lahtvee, Jekaterina Kazantseva, Arvi Jõers, Ranno Nahku, Isma Belouah
{"title":"Exploring the resilience and stability of a defined human gut microbiota consortium: An isothermal microcalorimetric study","authors":"Anna Kattel, Valter Aro, Petri-Jaan Lahtvee, Jekaterina Kazantseva, Arvi Jõers, Ranno Nahku, Isma Belouah","doi":"10.1002/mbo3.1430","DOIUrl":"10.1002/mbo3.1430","url":null,"abstract":"<p>The gut microbiota significantly contributes to human health and well-being. The aim of this study was to evaluate the stability and resilience of a consortium composed of three next-generation probiotics (NGPs) candidates originally found in the human gut. The growth patterns of <i>Akkermansia muciniphila</i>, <i>Bacteroides thetaiotaomicron</i>, and <i>Faecalibacterium prausnitzii</i> were studied both individually and consortium. The growth kinetics of Akkermansia muciniphila (<i>A. muciniphila</i>), Bacteroides thetaiotaomicron (<i>B. thetaiotaomicron</i>), and Faecalibacterium prausnitzii (<i>F. prausnitzii</i>) were characterized both individually and in consortium using isothermal microcalorimetry and 16S ribosomal RNA next-generation sequencing. The consortium reached stability after three passages and demonstrated resilience to changes in its initial composition. The concentration of butyrate produced was nearly twice as high in the consortium compared to the monoculture of F. prausnitzii. The experimental conditions and methodologies used in this article are a solid foundation for developing further complex consortia.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 4","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11307317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}