Microbiology and Molecular Biology Reviews最新文献

筛选
英文 中文
Enterococcus faecalis: an overlooked cell invader. 粪肠球菌:被忽视的细胞入侵者
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2024-09-06 DOI: 10.1128/mmbr.00069-24
Cristel Archambaud, Natalia Nunez, Ronni A G da Silva, Kimberly A Kline, Pascale Serror
{"title":"<i>Enterococcus faecalis</i>: an overlooked cell invader.","authors":"Cristel Archambaud, Natalia Nunez, Ronni A G da Silva, Kimberly A Kline, Pascale Serror","doi":"10.1128/mmbr.00069-24","DOIUrl":"https://doi.org/10.1128/mmbr.00069-24","url":null,"abstract":"<p><p>SUMMARY<i>Enterococcus faecalis</i> and <i>Enterococcus faecium</i> are human pathobionts that exhibit a dual lifestyle as commensal and pathogenic bacteria. The pathogenic lifestyle is associated with specific conditions involving host susceptibility and intestinal overgrowth or the use of a medical device. Although the virulence of <i>E. faecium</i> appears to benefit from its antimicrobial resistance, <i>E. faecalis</i> is recognized for its higher pathogenic potential. <i>E. faecalis</i> has long been considered a predominantly extracellular pathogen; it adheres to and is taken up by a wide range of mammalian cells, albeit with less efficiency than classical intracellular enteropathogens. Carbohydrate structures, rather than proteinaceous moieties, are likely to be primarily involved in the adhesion of <i>E. faecalis</i> to epithelial cells. Consistently, few adhesins have been implicated in the adhesion of <i>E. faecalis</i> to epithelial cells. On the host side, very little is known about cognate receptors, except for the role of glycosaminoglycans during macrophage infection. Several lines of evidence indicate that <i>E. faecalis</i> internalization may involve a zipper-like mechanism as well as a macropinocytosis pathway. Conversely, <i>E. faecalis</i> can use several strategies to prevent engulfment in phagocytes. However, the bacterial and host mechanisms underlying cell infection by <i>E. faecalis</i> are still in their infancy. The most recent striking finding is the existence of an intracellular lifestyle where <i>E. faecalis</i> can replicate within a variety of host cells. In this review, we summarize and discuss the current knowledge of <i>E. faecalis</i>-host cell interactions and argue on the need for further mechanistic studies to prevent or reduce infections.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. 耐药性结节分化(RND)外排泵转运体的结构和功能多样性及其对抗菌药耐药性的影响。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2024-09-05 DOI: 10.1128/mmbr.00089-23
Logan G Kavanaugh, Debayan Dey, William M Shafer, Graeme L Conn
{"title":"Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance.","authors":"Logan G Kavanaugh, Debayan Dey, William M Shafer, Graeme L Conn","doi":"10.1128/mmbr.00089-23","DOIUrl":"10.1128/mmbr.00089-23","url":null,"abstract":"<p><p>SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic homeostasis in fungal infections from the perspective of pathogens, immune cells, and whole-body systems. 从病原体、免疫细胞和全身系统的角度看真菌感染中的代谢平衡。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2024-09-04 DOI: 10.1128/mmbr.00171-22
Harshini Weerasinghe, Helen Stölting, Adam J Rose, Ana Traven
{"title":"Metabolic homeostasis in fungal infections from the perspective of pathogens, immune cells, and whole-body systems.","authors":"Harshini Weerasinghe, Helen Stölting, Adam J Rose, Ana Traven","doi":"10.1128/mmbr.00171-22","DOIUrl":"https://doi.org/10.1128/mmbr.00171-22","url":null,"abstract":"<p><p>SUMMARYThe ability to overcome metabolic stress is a major determinant of outcomes during infections. Pathogens face nutrient and oxygen deprivation in host niches and during their encounter with immune cells. Immune cells require metabolic adaptations for producing antimicrobial compounds and mounting antifungal inflammation. Infection also triggers systemic changes in organ metabolism and energy expenditure that range from an enhanced metabolism to produce energy for a robust immune response to reduced metabolism as infection progresses, which coincides with immune and organ dysfunction. Competition for energy and nutrients between hosts and pathogens means that successful survival and recovery from an infection require a balance between elimination of the pathogen by the immune systems (resistance), and doing so with minimal damage to host tissues and organs (tolerance). Here, we discuss our current knowledge of pathogen, immune cell and systemic metabolism in fungal infections, and the impact of metabolic disorders, such as obesity and diabetes. We put forward the idea that, while our knowledge of the use of metabolic regulation for fungal proliferation and antifungal immune responses (i.e., resistance) has been growing over the years, we also need to study the metabolic mechanisms that control tolerance of fungal pathogens. A comprehensive understanding of how to balance resistance and tolerance by metabolic interventions may provide insights into therapeutic strategies that could be used adjunctly with antifungal drugs to improve patient outcomes.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small molecule communication of Legionella: the ins and outs of autoinducer and nitric oxide signaling. 军团菌的小分子通讯:自身诱导剂和一氧化氮信号的来龙去脉。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2024-08-20 DOI: 10.1128/mmbr.00097-23
Sarah Michaelis, Laura Gomez-Valero, Tong Chen, Camille Schmid, Carmen Buchrieser, Hubert Hilbi
{"title":"Small molecule communication of <i>Legionella</i>: the ins and outs of autoinducer and nitric oxide signaling.","authors":"Sarah Michaelis, Laura Gomez-Valero, Tong Chen, Camille Schmid, Carmen Buchrieser, Hubert Hilbi","doi":"10.1128/mmbr.00097-23","DOIUrl":"https://doi.org/10.1128/mmbr.00097-23","url":null,"abstract":"<p><p>SUMMARY<i>Legionella pneumophila</i> is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of <i>Legionella</i>-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. <i>L. pneumophila</i> produces, secretes, and detects the α-hydroxyketone compound <i>Legionella</i> autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by <i>L. pneumophila</i> in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. <i>L. pneumophila</i> detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked <i>via</i> the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by <i>Legionella</i> species.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. 载人航天微生物学:微生物对影响健康和栖息地可持续性的机械力的反应。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2024-08-19 DOI: 10.1128/mmbr.00144-23
Cheryl A Nickerson, Robert J C McLean, Jennifer Barrila, Jiseon Yang, Starla G Thornhill, Laura L Banken, D Marshall Porterfield, George Poste, Neal R Pellis, C Mark Ott
{"title":"Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability.","authors":"Cheryl A Nickerson, Robert J C McLean, Jennifer Barrila, Jiseon Yang, Starla G Thornhill, Laura L Banken, D Marshall Porterfield, George Poste, Neal R Pellis, C Mark Ott","doi":"10.1128/mmbr.00144-23","DOIUrl":"https://doi.org/10.1128/mmbr.00144-23","url":null,"abstract":"<p><p>SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The polinton-like supergroup of viruses: evolution, molecular biology, and taxonomy. 波林顿类超级病毒群:进化、分子生物学和分类学。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2024-07-18 DOI: 10.1128/mmbr.00086-23
Eugene V Koonin, Matthias G Fischer, Jens H Kuhn, Mart Krupovic
{"title":"The polinton-like supergroup of viruses: evolution, molecular biology, and taxonomy.","authors":"Eugene V Koonin, Matthias G Fischer, Jens H Kuhn, Mart Krupovic","doi":"10.1128/mmbr.00086-23","DOIUrl":"10.1128/mmbr.00086-23","url":null,"abstract":"<p><p>SUMMARYPolintons are 15-20 kb-long self-synthesizing transposons that are widespread in eukaryotic, and in particular protist, genomes. Apart from a transposase and a protein-primed DNA polymerase, polintons encode homologs of major and minor jelly-roll capsid proteins, DNA-packaging ATPases, and proteases involved in capsid maturation of diverse eukaryotic viruses of kingdom <i>Bamfordvirae</i>. Given the conservation of these structural and morphogenetic proteins among polintons, these elements are predicted to alternate between transposon and viral lifestyles and, although virions have thus far not been detected, are classified as viruses (class <i>Polintoviricetes</i>) in the phylum <i>Preplasmiviricota</i>. Related to polintoviricetes are vertebrate adenovirids; unclassified polinton-like viruses (PLVs) identified in various environments or integrated into diverse protist genomes; virophages (<i>Maveriviricetes</i>), which are part of tripartite hyperparasitic systems including protist hosts and giant viruses; and capsid-less derivatives, such as cytoplasmic linear DNA plasmids of fungi and transpovirons. Phylogenomic analysis indicates that the polinton-like supergroup of viruses bridges bacterial tectivirids (preplasmiviricot class <i>Tectiliviricetes</i>) to the phylum <i>Nucleocytoviricota</i> that includes large and giant eukaryotic DNA viruses. Comparative structural analysis of proteins encoded by polinton-like viruses led to the discovery of previously undetected functional domains, such as terminal proteins and distinct proteases implicated in DNA polymerase processing, and clarified the evolutionary relationships within <i>Polintoviricetes</i>. Here, we leverage these insights into the evolution of the polinton-like supergroup to develop an amended megataxonomy that groups <i>Polintoviricetes</i>, PLVs (new class '<i>Aquintoviricetes</i>'), and virophages (renamed class '<i>Virophaviricetes</i>') together with <i>Adenoviridae</i> (new class '<i>Pharingeaviricetes</i>') in a preplasmiviricot subphylum '<i>Polisuviricotina</i>' sister to a subphylum including <i>Tectiliviricetes</i> ('<i>Prepoliviricotina</i>').</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. 纤毛运输复合蛋白核功能的进化轨迹。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2024-07-12 DOI: 10.1128/mmbr.00006-24
Alexander Ewerling, Helen Louise May-Simera
{"title":"Evolutionary trajectory for nuclear functions of ciliary transport complex proteins.","authors":"Alexander Ewerling, Helen Louise May-Simera","doi":"10.1128/mmbr.00006-24","DOIUrl":"https://doi.org/10.1128/mmbr.00006-24","url":null,"abstract":"<p><p>SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and <i>vice versa</i>. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of action of microbicides commonly used in infection prevention and control. 预防和控制感染常用杀微生物剂的作用机制。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2024-07-03 DOI: 10.1128/mmbr.00205-22
Charles P Gerba, Stephanie Boone, Raymond W Nims, Jean-Yves Maillard, Syed A Sattar, Joseph R Rubino, Julie McKinney, M Khalid Ijaz
{"title":"Mechanisms of action of microbicides commonly used in infection prevention and control.","authors":"Charles P Gerba, Stephanie Boone, Raymond W Nims, Jean-Yves Maillard, Syed A Sattar, Joseph R Rubino, Julie McKinney, M Khalid Ijaz","doi":"10.1128/mmbr.00205-22","DOIUrl":"https://doi.org/10.1128/mmbr.00205-22","url":null,"abstract":"<p><p>SUMMARYUnderstanding how commonly used chemical microbicides affect pathogenic microorganisms is important for formulation of microbicides. This review focuses on the mechanism(s) of action of chemical microbicides commonly used in infection prevention and control. Contrary to the typical site-specific mode of action of antibiotics, microbicides often act via multiple targets, causing rapid and irreversible damage to microbes. In the case of viruses, the envelope or protein capsid is usually the primary structural target, resulting in loss of envelope integrity or denaturation of proteins in the capsid, causing loss of the receptor-binding domain for host cell receptors, and/or breakdown of other viral proteins or nucleic acids. However, for certain virucidal microbicides, the nucleic acid may be a significant site of action. The region of primary damage to the protein or nucleic acid is site-specific and may vary with the virus type. Due to their greater complexity and metabolism, bacteria and fungi offer more targets. The rapid and irreversible damage to microbes may result from solubilization of lipid components and denaturation of enzymes involved in the transport of nutrients. Formulation of microbicidal actives that attack multiple sites on microbes, or control of the pH, addition of preservatives or potentiators, and so on, can increase the spectrum of action against pathogens and reduce both the concentrations and times needed to achieve microbicidal activity against the target pathogens.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial cell volume regulation and the importance of cyclic di-AMP. 细菌细胞体积调节和环状二-AMP 的重要性。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2024-06-27 Epub Date: 2024-06-10 DOI: 10.1128/mmbr.00181-23
Alexander J Foster, Marco van den Noort, Bert Poolman
{"title":"Bacterial cell volume regulation and the importance of cyclic di-AMP.","authors":"Alexander J Foster, Marco van den Noort, Bert Poolman","doi":"10.1128/mmbr.00181-23","DOIUrl":"10.1128/mmbr.00181-23","url":null,"abstract":"<p><p>SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hsp90, a team player in protein quality control and the stress response in bacteria. Hsp90,细菌蛋白质质量控制和应激反应的团队成员。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2024-06-27 Epub Date: 2024-03-27 DOI: 10.1128/mmbr.00176-22
Anushka C Wickramaratne, Sue Wickner, Andrea N Kravats
{"title":"Hsp90, a team player in protein quality control and the stress response in bacteria.","authors":"Anushka C Wickramaratne, Sue Wickner, Andrea N Kravats","doi":"10.1128/mmbr.00176-22","DOIUrl":"10.1128/mmbr.00176-22","url":null,"abstract":"<p><p>SUMMARYHeat shock protein 90 (Hsp90) participates in proteostasis by facilitating protein folding, activation, disaggregation, prevention of aggregation, degradation, and protection against degradation of various cellular proteins. It is highly conserved from bacteria to humans. In bacteria, protein remodeling by Hsp90 involves collaboration with the Hsp70 molecular chaperone and Hsp70 cochaperones. In eukaryotes, protein folding by Hsp90 is more complex and involves collaboration with many Hsp90 cochaperones as well as Hsp70 and Hsp70 cochaperones. This review focuses primarily on bacterial Hsp90 and highlights similarities and differences between bacterial and eukaryotic Hsp90. Seminal research findings that elucidate the structure and the mechanisms of protein folding, disaggregation, and reactivation promoted by Hsp90 are discussed. Understanding the mechanisms of bacterial Hsp90 will provide fundamental insight into the more complex eukaryotic chaperone systems.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信