Nikhila S Tanneti, Helen A Stillwell, Susan R Weiss
{"title":"Human coronaviruses: activation and antagonism of innate immune responses.","authors":"Nikhila S Tanneti, Helen A Stillwell, Susan R Weiss","doi":"10.1128/mmbr.00016-23","DOIUrl":"https://doi.org/10.1128/mmbr.00016-23","url":null,"abstract":"<p><p>SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0001623"},"PeriodicalIF":8.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance.","authors":"Anna Schumann, Ahmed Gaballa, Martin Wiedmann","doi":"10.1128/mmbr.00193-23","DOIUrl":"10.1128/mmbr.00193-23","url":null,"abstract":"<p><p>SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-<i>manno</i>-octulosonic acid-lipid A (Kdo<sub>2</sub>-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The <i>pet</i> genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying <i>pet</i> genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0019323"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bacterial acquisition of host fatty acids has far-reaching implications on virulence.","authors":"Jack K Waters, Bart A Eijkelkamp","doi":"10.1128/mmbr.00126-24","DOIUrl":"10.1128/mmbr.00126-24","url":null,"abstract":"<p><p>SUMMARYThe lipid homeostasis pathways of bacterial pathogens have been studied comprehensively for their biochemical functionality. However, new and refined technologies have supported the interrogation of bacterial lipid and fatty acid homeostasis mechanisms in more complex environments, such as mammalian host niches. In particular, emerging findings on the breadth and depth of host fatty acid uptake have demonstrated their importance beyond merely fatty acid utilization for membrane synthesis, as they can contribute to virulence factor regulation, pathogenesis, and group-based behaviors. Lipid homeostasis is also intertwined with other metabolic and physiological processes in the bacterial cells, which appear to be largely unique per species, but overarching themes can be derived. This review combines the latest biochemical and structural findings and places these in the context of bacterial pathogenesis, thereby shedding light on the far-reaching implications of lipid homeostasis on bacterial success.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0012624"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katrina M Jackson, Marcus de Melo Teixeira, Bridget M Barker
{"title":"From soil to clinic: current advances in understanding <i>Coccidioides</i> and coccidioidomycosis.","authors":"Katrina M Jackson, Marcus de Melo Teixeira, Bridget M Barker","doi":"10.1128/mmbr.00161-23","DOIUrl":"10.1128/mmbr.00161-23","url":null,"abstract":"<p><p>SUMMARY<i>Coccidioides immitis</i> and <i>Coccidioides posadasii</i> are fungal pathogens that cause systemic mycoses and are prevalent in arid regions in the Americas. While <i>C. immitis</i> mainly occurs in California and Washington, <i>C. posadasii</i> is widely distributed across North and South America. Both species induce coccidioidomycosis (San Joaquin Valley fever or, more commonly, Valley fever), with reported cases surging in the United States, notably in California and Arizona. Moreover, cases in Argentina, Brazil, and Mexico are on the rise. Climate change and environmental alterations conducive to <i>Coccidioides</i> spp. proliferation have been recently explored. Diagnostic challenges contribute to delayed treatment initiation, compounded by limited therapeutic options. Although antifungal drugs are often effective treatments, some patients do not respond to current therapies, underscoring the urgent need for a vaccine, particularly for vulnerable populations over 60 years old relocating to endemic areas. Despite recent progress, gaps persist in the understanding of <i>Coccidioides</i> ecology, host immune responses, and vaccine development. This review synthesizes recent research advancements in <i>Coccidioides</i> ecology, genomics, and immune responses, emphasizing ongoing efforts to develop a human vaccine.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0016123"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STRIPAK, a fundamental signaling hub of eukaryotic development.","authors":"Ulrich Kück, Stefanie Pöggeler","doi":"10.1128/mmbr.00205-23","DOIUrl":"10.1128/mmbr.00205-23","url":null,"abstract":"<p><p><b>SUMMARY</b>The striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0020523"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Urinary tract infections and catheter-associated urinary tract infections caused by <i>Pseudomonas aeruginosa</i>.","authors":"Nour El Husseini, Jared A Carter, Vincent T Lee","doi":"10.1128/mmbr.00066-22","DOIUrl":"10.1128/mmbr.00066-22","url":null,"abstract":"<p><p>SUMMARYUrinary tract infection (UTI) is one of the most common infections in otherwise healthy individuals. UTI is also common in healthcare settings where patients often require urinary catheters to alleviate urinary retention. The placement of a urinary catheter often leads to catheter-associated urinary tract infection (CAUTI) caused by a broad range of opportunistic pathogens, commonly referred to as ESKAPE (<i>Enterococcus</i>, <i>Staphylococcus</i>, <i>Klebsiella</i>, <i>Acinetobacter</i>, <i>Pseudomonas</i>, and <i>Enterobacter</i>) pathogens. Our understanding of CAUTI is complicated by the differences in pathogens, in initial microbial load, changes that occur due to the duration of catheterization, and the relationship between infection (colonization) and disease symptoms. To advance our understanding of CAUTI, we reviewed UTI and CAUTI caused by <i>Pseudomonas aeruginosa</i> which is unique in that it is not commonly found associated with human microbiomes. For this reason, the ability of <i>P. aeruginosa</i> to cause UTI and CAUTI requires the introduction of the bacteria to the bladder from catheterization. Once in the host, the virulence factors used by <i>P. aeruginosa</i> in these infections remain an area of ongoing research. In this review, we will discuss studies that focus on <i>P. aeruginosa</i> UTI and CAUTI to better understand the infection dynamics and outcome in clinical settings, virulence factors associated with <i>P. aeruginosa</i> isolated from the urinary tract, and animal studies to test which bacterial factors are required for this infection. Understanding how <i>P. aeruginosa</i> can cause UTI and CAUTI can provide an understanding of how these infections initiate and progress and may provide possible strategies to limit these infections.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0006622"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hepatitis B virus entry, assembly, and egress.","authors":"Yu-Chen Chuang, J-H James Ou","doi":"10.1128/mmbr.00014-24","DOIUrl":"10.1128/mmbr.00014-24","url":null,"abstract":"<p><p>SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0001424"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Threats from the <i>Candida parapsilosis</i> complex: the surge of multidrug resistance and a hotbed for new emerging pathogens.","authors":"Toni Gabaldón","doi":"10.1128/mmbr.00029-23","DOIUrl":"10.1128/mmbr.00029-23","url":null,"abstract":"<p><p>SUMMARY<i>Candida parapsilosis</i> is a common agent of candidiasis that has gained increased attention in recent years, culminating with its recent consideration as a high-priority fungal pathogen by the World Health Organization. Reasons for this classification are the recent surge in incidence and the alarmingly growing rates of drug and multidrug resistance. In addition, several closely related species such as <i>Candida metapsilosis</i> and <i>Candida orthopsilosis</i> may represent recently emerged opportunistic pathogens originated from environmental niches through interspecies hybridization. Here, I review recent research focused on the potential origin and spread of drug resistance and of emerging species in this complex. I will also discuss open questions regarding the possible implications of human activities in these two epidemiological phenomena.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0002923"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments.","authors":"Ross F Waller, Vern B Carruthers","doi":"10.1128/mmbr.00197-22","DOIUrl":"10.1128/mmbr.00197-22","url":null,"abstract":"<p><p>SUMMARYMyzozoans encompass apicomplexans and dinoflagellates that manifest diverse lifestyles in highly varied environments. They show enormous propensity to employ different metabolic programs and exploit different nutrient resources and niches, and yet, they share much core biology that underlies this evolutionary success and impact. This review discusses apicomplexan parasites of medical significance and the traits and properties they share with non-pathogenic myzozoans. These include the versatility of myzozoan plastids, which scale from fully photosynthetic organelles to the site of very select key metabolic pathways. Pivotal evolutionary innovations, such as the apical complex, have allowed myzozoans to shift from predatory to parasitic and other symbiotic lifestyles multiple times in both apicomplexan and dinoflagellate branches of the myzozoan evolutionary tree. Such traits, along with shared mechanisms for nutrient acquisition, appear to underpin the prosperity of myzozoans in their varied habitats. Understanding the mechanisms of these shared traits has the potential to spawn new strategic interventions against medically and veterinary relevant parasites within this grouping.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0019722"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Archana Shrestha, Iman Mehdizadeh Gohari, Jihong Li, Mauricio Navarro, Francisco A Uzal, Bruce A McClane
{"title":"The biology and pathogenicity of <i>Clostridium perfringens</i> type F: a common human enteropathogen with a new(ish) name.","authors":"Archana Shrestha, Iman Mehdizadeh Gohari, Jihong Li, Mauricio Navarro, Francisco A Uzal, Bruce A McClane","doi":"10.1128/mmbr.00140-23","DOIUrl":"10.1128/mmbr.00140-23","url":null,"abstract":"<p><p>SUMMARYIn the 2018-revised <i>Clostridium perfringens</i> typing classification system, isolates carrying the enterotoxin (<i>cpe</i>) and alpha toxin genes but no other typing toxin genes are now designated as type F. Type F isolates cause food poisoning and nonfoodborne human gastrointestinal (GI) diseases, which most commonly involve type F isolates carrying, respectivefooly, a chromosomal or plasmid-borne <i>cpe</i> gene. Compared to spores of other <i>C. perfringens</i> isolates, spores of type F chromosomal <i>cpe</i> isolates often exhibit greater resistance to food environment stresses, likely facilitating their survival in improperly prepared or stored foods. Multiple factors contribute to this spore resistance phenotype, including the production of a variant small acid-soluble protein-4. The pathogenicity of type F isolates involves sporulation-dependent <i>C. perfringens</i> enterotoxin (CPE) production. <i>C. perfringens</i> sporulation is initiated by orphan histidine kinases and sporulation-associated sigma factors that drive <i>cpe</i> transcription. CPE-induced cytotoxicity starts when CPE binds to claudin receptors to form a small complex (which also includes nonreceptor claudins). Approximately six small complexes oligomerize on the host cell plasma membrane surface to form a prepore. CPE molecules in that prepore apparently extend β-hairpin loops to form a β-barrel pore, allowing a Ca<sup>2+</sup> influx that activates calpain. With low-dose CPE treatment, caspase-3-dependent apoptosis develops, while high-CPE dose treatment induces necroptosis. Those effects cause histologic damage along with fluid and electrolyte losses from the colon and small intestine. Sialidases likely contribute to type F disease by enhancing CPE action and, for NanI-producing nonfoodborne human GI disease isolates, increasing intestinal growth and colonization.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0014023"},"PeriodicalIF":8.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}