{"title":"脆弱拟杆菌的基因调控:动态宿主环境下的适应性调控。","authors":"Daniel Ryan","doi":"10.1128/mmbr.00225-25","DOIUrl":null,"url":null,"abstract":"<p><p><b>SUMMARY</b><i>Bacteroides fragilis</i> occupies a dynamic position within the human gut. Though it comprises a relatively minor fraction of the gut microbiota, it is disproportionately enriched at extraintestinal sites of infection. This ability to survive in contrasting host environments pivots on a regulatory framework that is both modular and highly plastic. Rather than deploying a suite of hierarchical global regulators, <i>B. fragilis</i> employs numerous operon-embedded transcriptional switches, including site-specific DNA inversions, phase-variable epigenetic systems, extracytoplasmic function sigma/anti-sigma factor pairs, and hybrid two-component systems. These networks are further complemented by cis-regulatory elongation checkpoints and post-transcriptional control by small RNAs. This review explores the full spectrum of these regulatory mechanisms, highlighting how they facilitate niche adaptation, surface variation, immune evasion, and metabolic prioritization. It also explores intraspecies variation focusing on glycan metabolism, antibiotic resistance, and virulence. Additionally, it outlines recombination-driven regulation, alongside extracytoplasmic function sigma factor diversification, flexible promoter architecture, and elongation checkpoints, each contributing to the evolution of transcriptional control in <i>B. fragilis</i>. Finally, it outlines unanswered questions, including the largely unexplored sRNA regulon, the coordination of DNA inversions, elongation control, and phase-variable methylation, and proposes experimental strategies to investigate the integration of these regulatory systems during environmental transitions. Taken together, <i>B. fragilis</i> emerges as a model bacterium for studying decentralized gene regulation in complex microbial ecosystems, with implications for both microbial ecology and therapeutic targeting of the gut microbiota.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0022525"},"PeriodicalIF":7.8000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene regulation in <i>Bacteroides fragilis</i>: adaptive control in a dynamic host environment.\",\"authors\":\"Daniel Ryan\",\"doi\":\"10.1128/mmbr.00225-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>SUMMARY</b><i>Bacteroides fragilis</i> occupies a dynamic position within the human gut. Though it comprises a relatively minor fraction of the gut microbiota, it is disproportionately enriched at extraintestinal sites of infection. This ability to survive in contrasting host environments pivots on a regulatory framework that is both modular and highly plastic. Rather than deploying a suite of hierarchical global regulators, <i>B. fragilis</i> employs numerous operon-embedded transcriptional switches, including site-specific DNA inversions, phase-variable epigenetic systems, extracytoplasmic function sigma/anti-sigma factor pairs, and hybrid two-component systems. These networks are further complemented by cis-regulatory elongation checkpoints and post-transcriptional control by small RNAs. This review explores the full spectrum of these regulatory mechanisms, highlighting how they facilitate niche adaptation, surface variation, immune evasion, and metabolic prioritization. It also explores intraspecies variation focusing on glycan metabolism, antibiotic resistance, and virulence. Additionally, it outlines recombination-driven regulation, alongside extracytoplasmic function sigma factor diversification, flexible promoter architecture, and elongation checkpoints, each contributing to the evolution of transcriptional control in <i>B. fragilis</i>. Finally, it outlines unanswered questions, including the largely unexplored sRNA regulon, the coordination of DNA inversions, elongation control, and phase-variable methylation, and proposes experimental strategies to investigate the integration of these regulatory systems during environmental transitions. Taken together, <i>B. fragilis</i> emerges as a model bacterium for studying decentralized gene regulation in complex microbial ecosystems, with implications for both microbial ecology and therapeutic targeting of the gut microbiota.</p>\",\"PeriodicalId\":18520,\"journal\":{\"name\":\"Microbiology and Molecular Biology Reviews\",\"volume\":\" \",\"pages\":\"e0022525\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Molecular Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mmbr.00225-25\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00225-25","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Gene regulation in Bacteroides fragilis: adaptive control in a dynamic host environment.
SUMMARYBacteroides fragilis occupies a dynamic position within the human gut. Though it comprises a relatively minor fraction of the gut microbiota, it is disproportionately enriched at extraintestinal sites of infection. This ability to survive in contrasting host environments pivots on a regulatory framework that is both modular and highly plastic. Rather than deploying a suite of hierarchical global regulators, B. fragilis employs numerous operon-embedded transcriptional switches, including site-specific DNA inversions, phase-variable epigenetic systems, extracytoplasmic function sigma/anti-sigma factor pairs, and hybrid two-component systems. These networks are further complemented by cis-regulatory elongation checkpoints and post-transcriptional control by small RNAs. This review explores the full spectrum of these regulatory mechanisms, highlighting how they facilitate niche adaptation, surface variation, immune evasion, and metabolic prioritization. It also explores intraspecies variation focusing on glycan metabolism, antibiotic resistance, and virulence. Additionally, it outlines recombination-driven regulation, alongside extracytoplasmic function sigma factor diversification, flexible promoter architecture, and elongation checkpoints, each contributing to the evolution of transcriptional control in B. fragilis. Finally, it outlines unanswered questions, including the largely unexplored sRNA regulon, the coordination of DNA inversions, elongation control, and phase-variable methylation, and proposes experimental strategies to investigate the integration of these regulatory systems during environmental transitions. Taken together, B. fragilis emerges as a model bacterium for studying decentralized gene regulation in complex microbial ecosystems, with implications for both microbial ecology and therapeutic targeting of the gut microbiota.
期刊介绍:
Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.