Ana E Juarez, Alejandra Krüger, Paula M A Lucchesi
{"title":"产志贺毒素大肠杆菌、食品污染和噬菌体作为控制策略。","authors":"Ana E Juarez, Alejandra Krüger, Paula M A Lucchesi","doi":"10.1128/mmbr.00244-25","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYShiga toxin-producing <i>Escherichia coli</i> (STEC) strains cause diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS) in humans. HUS is a severe systemic illness that can affect individuals of all ages, especially children. There is no specific treatment for HUS, and interventions consist of supportive therapy. STEC infections occur worldwide, and severe illness may occur in sporadic cases or outbreaks. In 2023, STEC was the third most frequently reported zoonotic agent detected in foodborne outbreaks in the EU. In this manuscript, we have focused on STEC reservoirs, STEC contamination of foods, source attribution of STEC infections, and current discussions about the pathogenic potential of STEC strains present in foods. Considering that food contamination with STEC represents a serious threat to public health, that preventive strategies for STEC infection are critical, and natural antimicrobials have gained increasing interest, we also present thoroughly revised information about bacteriophages as a strategy for STEC control. We also discussed the main aspects of the performance of commercial and non-commercial bacteriophages on foods artificially contaminated with STEC.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0024425"},"PeriodicalIF":7.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462294/pdf/","citationCount":"0","resultStr":"{\"title\":\"Shiga toxin-producing <i>Escherichia coli</i>, food contamination, and bacteriophages as a control strategy.\",\"authors\":\"Ana E Juarez, Alejandra Krüger, Paula M A Lucchesi\",\"doi\":\"10.1128/mmbr.00244-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SUMMARYShiga toxin-producing <i>Escherichia coli</i> (STEC) strains cause diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS) in humans. HUS is a severe systemic illness that can affect individuals of all ages, especially children. There is no specific treatment for HUS, and interventions consist of supportive therapy. STEC infections occur worldwide, and severe illness may occur in sporadic cases or outbreaks. In 2023, STEC was the third most frequently reported zoonotic agent detected in foodborne outbreaks in the EU. In this manuscript, we have focused on STEC reservoirs, STEC contamination of foods, source attribution of STEC infections, and current discussions about the pathogenic potential of STEC strains present in foods. Considering that food contamination with STEC represents a serious threat to public health, that preventive strategies for STEC infection are critical, and natural antimicrobials have gained increasing interest, we also present thoroughly revised information about bacteriophages as a strategy for STEC control. We also discussed the main aspects of the performance of commercial and non-commercial bacteriophages on foods artificially contaminated with STEC.</p>\",\"PeriodicalId\":18520,\"journal\":{\"name\":\"Microbiology and Molecular Biology Reviews\",\"volume\":\" \",\"pages\":\"e0024425\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462294/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Molecular Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mmbr.00244-25\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00244-25","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Shiga toxin-producing Escherichia coli, food contamination, and bacteriophages as a control strategy.
SUMMARYShiga toxin-producing Escherichia coli (STEC) strains cause diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS) in humans. HUS is a severe systemic illness that can affect individuals of all ages, especially children. There is no specific treatment for HUS, and interventions consist of supportive therapy. STEC infections occur worldwide, and severe illness may occur in sporadic cases or outbreaks. In 2023, STEC was the third most frequently reported zoonotic agent detected in foodborne outbreaks in the EU. In this manuscript, we have focused on STEC reservoirs, STEC contamination of foods, source attribution of STEC infections, and current discussions about the pathogenic potential of STEC strains present in foods. Considering that food contamination with STEC represents a serious threat to public health, that preventive strategies for STEC infection are critical, and natural antimicrobials have gained increasing interest, we also present thoroughly revised information about bacteriophages as a strategy for STEC control. We also discussed the main aspects of the performance of commercial and non-commercial bacteriophages on foods artificially contaminated with STEC.
期刊介绍:
Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.