Dmitri V Mavrodi, Wulf Blankenfeldt, Olga V Mavrodi, David M Weller, Linda S Thomashow
{"title":"Microbial phenazines: biosynthesis, structural diversity, evolution, regulation, and biological significance.","authors":"Dmitri V Mavrodi, Wulf Blankenfeldt, Olga V Mavrodi, David M Weller, Linda S Thomashow","doi":"10.1128/mmbr.00147-23","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYPhenazines are small, redox-active secondary metabolites produced by various bacterial species. These compounds participate in electron-transfer reactions, aiding microbes in surviving stressful or oxygen-limited environments. In this review, we examine the extensive structural diversity of phenazines and trace the evolutionary history of their biosynthetic pathways, which often move between distantly related species through horizontal gene transfer. We also explore how environmental factors such as nutrient levels and cell-to-cell signaling regulate phenazine production. Beyond their roles in microbial physiology, phenazines influence interactions among organisms, acting as antimicrobial agents, signaling molecules, and factors that shape microbiome dynamics in soils, plant roots, and other habitats. A better understanding of phenazine biology reveals how microbes adapt and thrive in diverse environments and emphasizes the potential applications of these compounds in agriculture and human health.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0014723"},"PeriodicalIF":7.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00147-23","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SUMMARYPhenazines are small, redox-active secondary metabolites produced by various bacterial species. These compounds participate in electron-transfer reactions, aiding microbes in surviving stressful or oxygen-limited environments. In this review, we examine the extensive structural diversity of phenazines and trace the evolutionary history of their biosynthetic pathways, which often move between distantly related species through horizontal gene transfer. We also explore how environmental factors such as nutrient levels and cell-to-cell signaling regulate phenazine production. Beyond their roles in microbial physiology, phenazines influence interactions among organisms, acting as antimicrobial agents, signaling molecules, and factors that shape microbiome dynamics in soils, plant roots, and other habitats. A better understanding of phenazine biology reveals how microbes adapt and thrive in diverse environments and emphasizes the potential applications of these compounds in agriculture and human health.
期刊介绍:
Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.