MicroscopyPub Date : 2019-11-01DOI: 10.1093/jmicro/dfaa006
Yoichiro Hashimoto;Hiroyuki Ito;Masahiro Sasajima
{"title":"Enhancement of image contrast for carbon nanotube and polymer composite film in scanning electron microscope","authors":"Yoichiro Hashimoto;Hiroyuki Ito;Masahiro Sasajima","doi":"10.1093/jmicro/dfaa006","DOIUrl":"10.1093/jmicro/dfaa006","url":null,"abstract":"Image contrast between carbon nanotubes (CNTs) and polytetrafluoroethylene (PTFE) in a CNT/PTFE composite film, which is difficult to obtain by conventional backscattered electron (BSE) imaging, was optimized to better elucidate the distribution of CNT in the film. Ultra-low landing energy condition (0.3 keV in this study) was used to prevent specimen damage due to electron beam irradiation. Signal acceptance maps, which represent the distributions of energy and take-off angle, were calculated to evaluate the features of the signal detection system used in this study. SEM images of this composite film were taken under several sets of conditions and analyzed using these acceptance maps. CNT and PTFE in the composite film can be clearly distinguished with material and topographic contrasts using the BSE signal under optimized energy and take-off angle ranges, even at ultra-low landing energy conditions.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":"69 1","pages":"167-172"},"PeriodicalIF":1.8,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfaa006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37692268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroscopyPub Date : 2019-11-01DOI: 10.1093/jmicro/dfaa009
Yasushi Okada;Yasukazu Murakami
{"title":"For microscopy special issue on ‘AI and Imaging’","authors":"Yasushi Okada;Yasukazu Murakami","doi":"10.1093/jmicro/dfaa009","DOIUrl":"10.1093/jmicro/dfaa009","url":null,"abstract":"","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":"69 1","pages":"59-60"},"PeriodicalIF":1.8,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfaa009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37724566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroscopyPub Date : 2019-02-01DOI: 10.1093/jmicro/dfy043
Sidney L Shaw;David Thoms;James Powers
{"title":"Structured Illumination Approaches for Super-Resolution in Plant Cells","authors":"Sidney L Shaw;David Thoms;James Powers","doi":"10.1093/jmicro/dfy043","DOIUrl":"10.1093/jmicro/dfy043","url":null,"abstract":"The application of structured illumination approaches for super-resolution light microscopy in plant cells is reviewed. Challenges and recent inroads using both wide-field and point-based techniques are discussed with specific application to live-cell imaging. The advent of super-resolution techniques in biological microscopy has opened new frontiers for exploring the molecular distribution of proteins and small molecules in cells. Improvements in optical design and innovations in the approaches for the collection of fluorescence emission have produced substantial gains in signal from chemical labels and fluorescent proteins. Structuring the illumination to elicit fluorescence from specific or even random patterns allows the extraction of higher order spatial frequencies from specimens labeled with conventional probes. Application of this approach to plant systems for super-resolution imaging has been relatively slow owing in large part to aberrations incurred when imaging through the plant cell wall. In this brief review, we address the use of two prominent methods for generating super-resolution images in living plant specimens and discuss future directions for gaining better access to these techniques.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":"68 1","pages":"37-44"},"PeriodicalIF":1.8,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfy043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36554902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroscopyPub Date : 2019-02-01DOI: 10.1093/jmicro/dfy142
Shuhei Ota;Shigeyuki Kawano
{"title":"Three-dimensional ultrastructure and hyperspectral imaging of metabolite accumulation and dynamics in Haematococcus and Chlorella","authors":"Shuhei Ota;Shigeyuki Kawano","doi":"10.1093/jmicro/dfy142","DOIUrl":"10.1093/jmicro/dfy142","url":null,"abstract":"Basic as well as applied phycological researches have developed alongside light and electron microscopy. This article reviews recent studies of bioimaging in the context of algal biorefining, and explains how 3D-TEM imaging are becoming useful tools for analyzing and monitoring the dynamics of algal cells. Phycology has developed alongside light and electron microscopy techniques. Since the 1950s, progress in the field has accelerated dramatically with the advent of electron microscopy. Transmission electron microscopes can only acquire imaging data on a 2D plane. Currently, many of the life sciences are seeking to obtain 3D images with electron microscopy for the accurate interpretation of subcellular dynamics. Three-dimensional reconstruction using serial sections is a method that can cover relatively large cells or tissues without requiring special equipment. Another challenge is monitoring secondary metabolites (such as lipids or carotenoids) in intact cells. This became feasible with hyperspectral cameras, which enable the acquisition of wide-range spectral information in living cells. Here, we review bioimaging studies on the intracellular dynamics of substances such as lipids, carotenoids and phosphorus using conventional to state-of-the-art microscopy techniques in the field of algal biorefining.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":"68 1","pages":"57-68"},"PeriodicalIF":1.8,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfy142","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36848759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroscopyPub Date : 2019-02-01DOI: 10.1093/jmicro/dfy133
Marisa S Otegui;Jannice G Pennington
{"title":"Electron tomography in plant cell biology","authors":"Marisa S Otegui;Jannice G Pennington","doi":"10.1093/jmicro/dfy133","DOIUrl":"10.1093/jmicro/dfy133","url":null,"abstract":"This review discusses recent advances in three-dimensional electron microscopy with an emphasis on the contributions of electron tomography to the analysis of plant organelles and cellular processes. Electron tomography (ET) approaches are based on the imaging of a biological specimen at different tilt angles by transmission electron microscopy (TEM). ET can be applied to both plastic-embedded and frozen samples. Technological advancements in TEM, direct electron detection, automated image collection, and imaging processing algorithms allow for 2–7-nm scale axial resolution in tomographic reconstructions of cells and organelles. In this review, we discussed the application of ET in plant cell biology and new opportunities for imaging plant cells by cryo-ET and other 3D electron microscopy approaches.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":"68 1","pages":"69-79"},"PeriodicalIF":1.8,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfy133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36685750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroscopyPub Date : 2019-02-01DOI: 10.1093/jmicro/dfy135
Tatsuaki Goh
{"title":"Long-term live-cell imaging approaches to study lateral root formation in Arabidopsis thaliana","authors":"Tatsuaki Goh","doi":"10.1093/jmicro/dfy135","DOIUrl":"10.1093/jmicro/dfy135","url":null,"abstract":"Observing cellular and molecular processes for an extended time at various scales are crucial for understanding biological processes during organogenesis. This review focuses on the contribution of multi-scale imaging approaches to understanding plant lateral root formation processes from cells to organs. Lateral roots comprise the majority of the branching root system and are important for acquiring nutrients and water from soil in addition to providing anchorage. Lateral roots develop post-embryonically from existing root parts and originate from a subset of specified pericycle cells (lateral root founder cells) located deep inside roots. Small numbers of these specified pericycle cells undergo several rounds of cell division to create a dome-shaped primordium, which eventually organizes a meristem, an essential region for plant growth with active cell division, and emerges from its parental root as a lateral root. Observing cellular and molecular processes for an extended time at various scales are crucial for understanding biological processes during organogenesis. Lateral root formation is an example of the successful application of live-cell imaging approaches to understand various aspects of developmental events in plants, including cell fate determination, cell proliferation, cell-to-cell interaction and cell wall modification. Here I review the recent progress in understanding the molecular mechanisms of lateral root formation and the contribution of live-cell imaging approaches.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":"68 1","pages":"4-12"},"PeriodicalIF":1.8,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfy135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36706449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroscopyPub Date : 2019-02-01DOI: 10.1093/jmicro/dfz005
Shigeo Okabe
{"title":"Microscopy in 2019 with a renewed editorial board","authors":"Shigeo Okabe","doi":"10.1093/jmicro/dfz005","DOIUrl":"10.1093/jmicro/dfz005","url":null,"abstract":"","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":"68 1","pages":"1-2"},"PeriodicalIF":1.8,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfz005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60940865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroscopyPub Date : 2019-02-01DOI: 10.1093/jmicro/dfz006
Yoshinobu Mineyuki;Marisa S Otegui
{"title":"For Microscopy special issue on ‘Plant Science’","authors":"Yoshinobu Mineyuki;Marisa S Otegui","doi":"10.1093/jmicro/dfz006","DOIUrl":"10.1093/jmicro/dfz006","url":null,"abstract":"","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":"68 1","pages":"3-3"},"PeriodicalIF":1.8,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfz006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60941081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroscopyPub Date : 2019-02-01DOI: 10.1093/jmicro/dfy132
Yamato Yoshida;Yuko Mogi
{"title":"How do plastids and mitochondria divide?","authors":"Yamato Yoshida;Yuko Mogi","doi":"10.1093/jmicro/dfy132","DOIUrl":"10.1093/jmicro/dfy132","url":null,"abstract":"Plastids and mitochondria do not multiply de novo but though the division of pre-existing organelles. Here, we review the structural frameworks of the mechanisms of plastid and mitochondrial division. Then, we highlight fundamental issues that need to be resolved to reveal the underlying mechanisms of plastid and mitochondrial division. Plastids and mitochondria are thought to have originated from free-living cyanobacterial and alpha-proteobacterial ancestors, respectively, via endosymbiosis. Their evolutionary origins dictate that these organelles do not multiply de novo but through the division of pre-existing plastids and mitochondria. Over the past three decades, studies have shown that plastid and mitochondrial division are performed by contractile ring-shaped structures, broadly termed the plastid and mitochondrial-division machineries. Interestingly, the division machineries are hybrid forms of the bacterial cell division system and eukaryotic membrane fission system. The structure and function of the plastid and mitochondrial-division machineries are similar to each other, implying that the division machineries evolved in parallel since their establishment in primitive eukaryotes. Compared with our knowledge of their structures, our understanding of the mechanical details of how these division machineries function is still quite limited. Here, we review and compare the structural frameworks of the plastid and mitochondrial-division machineries in both lower and higher eukaryotes. Then, we highlight fundamental issues that need to be resolved to reveal the underlying mechanisms of plastid and mitochondrial division. Finally, we highlight related studies that point to an exciting future for the field.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":"68 1","pages":"45-56"},"PeriodicalIF":1.8,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfy132","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36766106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroscopyPub Date : 2019-02-01DOI: 10.1093/jmicro/dfy143
Masamitsu Wada
{"title":"Light-dependent spatiotemporal control of plant cell development and organelle movement in fern gametophytes","authors":"Masamitsu Wada","doi":"10.1093/jmicro/dfy143","DOIUrl":"10.1093/jmicro/dfy143","url":null,"abstract":"The haploid gametophyte generation of ferns is an excellent experimental material for cell biology studies because of its simple structure and high sensitivity to light. Each step of the developmental process, such as cell growth, cell cycle and the direction of cell division, is controlled, step by step, by light, unlike what happens in complex seed plant tissues. To perform analyses at the cell or organelle level, we have developed special tools, instruments and techniques, such as a cuvette suitable for repeated centrifugation in particular directions, microbeam irradiators for partial cell irradiation and single-cell ligation technique to create enucleated cells. Some of our main discoveries are as follows: (1) changes in the intracellular position of the nucleus in long protonemal cells by centrifugation revealed that the nuclear position or a factor(s) that is/are co-centrifuged with the nucleus is important for the decision regarding the place of the formation of preprophase bands and the timing of their disappearance, which determines the position where the new cell wall attaches to the mother cell wall; (2) even within a single cell, various phenomena could be induced by blue or red light, with the localization of the blue or red light receptors being different depending on the phenomenon; (3) de novo mRNA synthesis is not involved in the signal transduction pathways underlying light-induced chloroplast movements. In this review article, various microscopic techniques, in addition to the results of physiology studies in fern gametophytes, are described.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":"68 1","pages":"13-36"},"PeriodicalIF":1.8,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfy143","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36805305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}