{"title":"Eu2+掺杂等摩尔KCl:KBr固溶体中第二相沉淀物的形态和定向生长:使用掺杂离子作为荧光染料的落射荧光显微镜研究","authors":"Adolfo Ernesto Cordero-Borboa;Rodrigo Unda-Angeles","doi":"10.1093/jmicro/dfz110","DOIUrl":null,"url":null,"abstract":"The shape and orientation of second-phase precipitates in a Eu\n<sup>2+</sup>\n-doped equimolar KCl:KBr solid solution are reported in this paper as they were unveiled by epifluorescence microscopy. To make this, microscopy images of different optical cross sections of some precipitate fields and, also, of some representative precipitates in these fields, were recorded by using the Eu\n<sup>2+</sup>\n ion itself as a fluorochrome. From these images, the corresponding precipitate fields and individual precipitates were electronically reconstructed into the host lattice space. Previously, the KCl:KBr:Eu\n<sup>2+</sup>\n system was characterized by absorption and fluorescence optical spectrophotometry, to tailor properly the fluorescence mirror unit, as well as by powder and single-plate X-ray diffraction, to correlate the host lattice orientation with those of the observed precipitates. These are shaped as plates, with broad faces parallel to host lattice {100}, {110} or {120}planes (the {100}, {110} and {120} precipitates, respectively), and as rods, aligned with a host lattice ˂100> direction (the ˂100> precipitates). The {100}, {110}, {120}-precipitate broad faces are in the shapes of 72.6° rhomboids, rectangles and 59.5° rhomboids, with a side lying along host lattice <310>, <110> and <421> directions, respectively, and with another side lying along a <100> direction. A typical precipitate field and the spatial reconstructions of typical {100}, {110}, {120} and ˂100> precipitates, as well as their corresponding electronic 3D-geometrical models, are described in detail. It is discussed that four different europium precipitation states are responsible for the precipitation and that the precipitate lattices are spatially coherent with the host lattice. The shapes and spatial orientations, in relation to the matrix lattice, of europium second-phase precipitates in an equi-molar KCl:KBr solid solution host are studied for the fi rst time ever. This was performed by epifl uorescence optical microscopy by using the doping divalent europium ion as a fl uorochrome.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfz110","citationCount":"0","resultStr":"{\"title\":\"Morphology and orientated growth of second-phase precipitates in a Eu2+-doped equimolar KCl:KBr solid solution: an epifluorescence microscopy study by using the doping ion as a fluorochrome\",\"authors\":\"Adolfo Ernesto Cordero-Borboa;Rodrigo Unda-Angeles\",\"doi\":\"10.1093/jmicro/dfz110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The shape and orientation of second-phase precipitates in a Eu\\n<sup>2+</sup>\\n-doped equimolar KCl:KBr solid solution are reported in this paper as they were unveiled by epifluorescence microscopy. To make this, microscopy images of different optical cross sections of some precipitate fields and, also, of some representative precipitates in these fields, were recorded by using the Eu\\n<sup>2+</sup>\\n ion itself as a fluorochrome. From these images, the corresponding precipitate fields and individual precipitates were electronically reconstructed into the host lattice space. Previously, the KCl:KBr:Eu\\n<sup>2+</sup>\\n system was characterized by absorption and fluorescence optical spectrophotometry, to tailor properly the fluorescence mirror unit, as well as by powder and single-plate X-ray diffraction, to correlate the host lattice orientation with those of the observed precipitates. These are shaped as plates, with broad faces parallel to host lattice {100}, {110} or {120}planes (the {100}, {110} and {120} precipitates, respectively), and as rods, aligned with a host lattice ˂100> direction (the ˂100> precipitates). The {100}, {110}, {120}-precipitate broad faces are in the shapes of 72.6° rhomboids, rectangles and 59.5° rhomboids, with a side lying along host lattice <310>, <110> and <421> directions, respectively, and with another side lying along a <100> direction. A typical precipitate field and the spatial reconstructions of typical {100}, {110}, {120} and ˂100> precipitates, as well as their corresponding electronic 3D-geometrical models, are described in detail. It is discussed that four different europium precipitation states are responsible for the precipitation and that the precipitate lattices are spatially coherent with the host lattice. The shapes and spatial orientations, in relation to the matrix lattice, of europium second-phase precipitates in an equi-molar KCl:KBr solid solution host are studied for the fi rst time ever. This was performed by epifl uorescence optical microscopy by using the doping divalent europium ion as a fl uorochrome.\",\"PeriodicalId\":18515,\"journal\":{\"name\":\"Microscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/jmicro/dfz110\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9108460/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9108460/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Morphology and orientated growth of second-phase precipitates in a Eu2+-doped equimolar KCl:KBr solid solution: an epifluorescence microscopy study by using the doping ion as a fluorochrome
The shape and orientation of second-phase precipitates in a Eu
2+
-doped equimolar KCl:KBr solid solution are reported in this paper as they were unveiled by epifluorescence microscopy. To make this, microscopy images of different optical cross sections of some precipitate fields and, also, of some representative precipitates in these fields, were recorded by using the Eu
2+
ion itself as a fluorochrome. From these images, the corresponding precipitate fields and individual precipitates were electronically reconstructed into the host lattice space. Previously, the KCl:KBr:Eu
2+
system was characterized by absorption and fluorescence optical spectrophotometry, to tailor properly the fluorescence mirror unit, as well as by powder and single-plate X-ray diffraction, to correlate the host lattice orientation with those of the observed precipitates. These are shaped as plates, with broad faces parallel to host lattice {100}, {110} or {120}planes (the {100}, {110} and {120} precipitates, respectively), and as rods, aligned with a host lattice ˂100> direction (the ˂100> precipitates). The {100}, {110}, {120}-precipitate broad faces are in the shapes of 72.6° rhomboids, rectangles and 59.5° rhomboids, with a side lying along host lattice <310>, <110> and <421> directions, respectively, and with another side lying along a <100> direction. A typical precipitate field and the spatial reconstructions of typical {100}, {110}, {120} and ˂100> precipitates, as well as their corresponding electronic 3D-geometrical models, are described in detail. It is discussed that four different europium precipitation states are responsible for the precipitation and that the precipitate lattices are spatially coherent with the host lattice. The shapes and spatial orientations, in relation to the matrix lattice, of europium second-phase precipitates in an equi-molar KCl:KBr solid solution host are studied for the fi rst time ever. This was performed by epifl uorescence optical microscopy by using the doping divalent europium ion as a fl uorochrome.
期刊介绍:
Microscopy, previously Journal of Electron Microscopy, promotes research combined with any type of microscopy techniques, applied in life and material sciences. Microscopy is the official journal of the Japanese Society of Microscopy.