V. Arul, J. Booher, Steven R. Groen, Everett W. Howe, Wanlin Li, Vlad Matei, R. Pries, Caleb Springer
{"title":"Doubly isogenous genus-2 curves with 𝐷₄-action","authors":"V. Arul, J. Booher, Steven R. Groen, Everett W. Howe, Wanlin Li, Vlad Matei, R. Pries, Caleb Springer","doi":"10.1090/mcom/3891","DOIUrl":"https://doi.org/10.1090/mcom/3891","url":null,"abstract":"<p>We study the extent to which curves over finite fields are characterized by their zeta functions and the zeta functions of certain of their covers. Suppose <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C\">\u0000 <mml:semantics>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">C</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C prime\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:mo>′</mml:mo>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">C’</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> are curves over a finite field <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, with <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-rational base points <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\">\u0000 <mml:semantics>\u0000 <mml:mi>P</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">P</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P prime\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>P</mml:mi>\u0000 <mml:mo>′</mml:mo>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">P’</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, and let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\u0000 <mml:semantics>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D prime\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo>′</mml:mo>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">D’</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be the pullbacks (via the Abel–Jacobi map) of the multiplication-by-<inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> map","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44511508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cyclic isogenies of elliptic curves over fixed quadratic fields","authors":"Barinder Banwait, Filip Najman, Oana Padurariu","doi":"10.1090/mcom/3894","DOIUrl":"https://doi.org/10.1090/mcom/3894","url":null,"abstract":"Building on Mazur’s 1978 work on prime degree isogenies, Kenku determined in 1981 all possible cyclic isogenies of elliptic curves over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Although more than 40 years have passed, the determination of cyclic isogenies of elliptic curves over a single other number field has hitherto not been realised. In this paper we develop a procedure to assist in establishing such a determination for a given quadratic field. Executing this procedure on all quadratic fields <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis StartRoot d EndRoot right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msqrt> <mml:mi>d</mml:mi> </mml:msqrt> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {Q}(sqrt {d})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue d EndAbsoluteValue greater-than 10 Superscript 4\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo>></mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>4</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|d| > 10^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we obtain, conditional on the Generalised Riemann Hypothesis, the determination of cyclic isogenies of elliptic curves over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"19\"> <mml:semantics> <mml:mn>19</mml:mn> <mml:annotation encoding=\"application/x-tex\">19</mml:annotation> </mml:semantics> </mml:math> </inline-formula> quadratic fields, including <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis StartRoot 213 EndRoot right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msqrt> <mml:mn>213</mml:mn> </mml:msqrt> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {Q}(sqrt {213})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136037366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modified-operator method for the calculation of band diagrams of crystalline materials","authors":"Eric Cancès, Muhammad Hassan, Laurent Vidal","doi":"10.1090/mcom/3897","DOIUrl":"https://doi.org/10.1090/mcom/3897","url":null,"abstract":"In solid state physics, electronic properties of crystalline materials are often inferred from the spectrum of periodic Schrödinger operators. As a consequence of Bloch’s theorem, the numerical computation of electronic quantities of interest involves computing derivatives or integrals over the Brillouin zone of so-called energy bands, which are piecewise smooth, Lipschitz continuous periodic functions obtained by solving a parametrized elliptic eigenvalue problem on a Hilbert space of periodic functions. Classical discretization strategies for resolving these eigenvalue problems produce approximate energy bands that are either non-periodic or discontinuous, both of which cause difficulty when computing numerical derivatives or employing numerical quadrature. In this article, we study an alternative discretization strategy based on an ad hoc operator modification approach. While specific instances of this approach have been proposed in the physics literature, we introduce here a systematic formulation of this operator modification approach. We derive a priori error estimates for the resulting energy bands and we show that these bands are periodic and can be made arbitrarily smooth (away from band crossings) by adjusting suitable parameters in the operator modification approach. Numerical experiments involving a toy model in 1D, graphene in 2D, and silicon in 3D validate our theoretical results and showcase the efficiency of the operator modification approach.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135236031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the seeds and the great-grandchildren of a numerical semigroup","authors":"Maria Bras-Amorós","doi":"10.1090/mcom/3881","DOIUrl":"https://doi.org/10.1090/mcom/3881","url":null,"abstract":"We present a revisit of the seeds algorithm to explore the semigroup tree. First, an equivalent definition of seed is presented, which seems easier to manage. Second, we determine the seeds of semigroups with at most three left elements. And third, we find the great-grandchildren of any numerical semigroup in terms of its seeds. The the right-generators descendant (RGD) algorithm is the fastest known algorithm at the moment. But if one compares the originary seeds algorithm with the RGD algorithm, one observes that the seeds algorithm uses more elaborated mathematical tools while the RGD algorithm uses data structures that are better adapted to the final C implementations. For genera up to around one half of the maximum size of native integers, the newly defined seeds algorithm performs significantly better than the RGD algorithm. For future compilators allowing larger native sized integers this may constitute a powerful tool to explore the semigroup tree up to genera never explored before. The new seeds algorithm uses bitwise integer operations, the knowledge of the seeds of semigroups with at most three left elements and of the great-grandchildren of any numerical semigroup, apart from techniques such as parallelization and depth first search as wisely introduced in this context by Fromentin and Hivert [Math. Comp. 85 (2016) pp. 2553–2568]. The algorithm has been used to prove that there are no Eliahou semigroups of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"66\"> <mml:semantics> <mml:mn>66</mml:mn> <mml:annotation encoding=\"application/x-tex\">66</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, hence proving the Wilf conjecture for genus up to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"66\"> <mml:semantics> <mml:mn>66</mml:mn> <mml:annotation encoding=\"application/x-tex\">66</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also found three Eliahou semigroups of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"67\"> <mml:semantics> <mml:mn>67</mml:mn> <mml:annotation encoding=\"application/x-tex\">67</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. One of these semigroups is neither of Eliahou-Fromentin type, nor of Delgado’s type. However, it is a member of a new family suggested by Shalom Eliahou.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136337533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computing error bounds for asymptotic expansions of regular P-recursive sequences","authors":"Ruiwen Dong, Stephen Melczer, Marc Mezzarobba","doi":"10.1090/mcom/3888","DOIUrl":"https://doi.org/10.1090/mcom/3888","url":null,"abstract":"Over the last several decades, improvements in the fields of analytic combinatorics and computer algebra have made determining the asymptotic behaviour of sequences satisfying linear recurrence relations with polynomial coefficients largely a matter of routine, under assumptions that hold often in practice. The algorithms involved typically take a sequence, encoded by a recurrence relation and initial terms, and return the leading terms in an asymptotic expansion up to a big-O error term. Less studied, however, are effective techniques giving an explicit bound on asymptotic error terms. Among other things, such explicit bounds typically allow the user to automatically prove sequence positivity (an active area of enumerative and algebraic combinatorics) by exhibiting an index when positive leading asymptotic behaviour dominates any error terms. In this article, we present a practical algorithm for computing such asymptotic approximations with rigorous error bounds, under the assumption that the generating series of the sequence is a solution of a differential equation with regular (Fuchsian) dominant singularities. Our algorithm approximately follows the singularity analysis method of Flajolet and Odlyzko, except that all big-O terms involved in the derivation of the asymptotic expansion are replaced by explicit error terms. The computation of the error terms combines analytic bounds from the literature with effective techniques from rigorous numerics and computer algebra. We implement our algorithm in the SageMath computer algebra system and exhibit its use on a variety of applications (including our original motivating example, solution uniqueness in the Canham model for the shape of genus one biomembranes).","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136337990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Ramanujan integral and its derivatives: computation and analysis","authors":"Walter Gautschi, Gradimir Milovanovic","doi":"10.1090/mcom/3892","DOIUrl":"https://doi.org/10.1090/mcom/3892","url":null,"abstract":"The principal tool of computation used in this paper is classical Gaussian quadrature on the interval [0,1], which happens to be particularly effective here. Explicit expressions are found for the derivatives of the Ramanujan integral in question, and it is proved that the latter is completely monotone on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 0 comma normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(0,infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a byproduct, known series expansions for incomplete gamma functions are examined with regard to their convergence properties. The paper also pays attention to another famous integral, the Euler integral — better known as the gamma function — revitalizing a largely neglected part of the function, the part corresponding to negative values of the argument, which plays a prominent role in our work.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135065443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low regularity estimates for CutFEM approximations of an elliptic problem with mixed boundary conditions","authors":"Erik Burman, Peter Hansbo, Mats G. Larson","doi":"10.1090/mcom/3875","DOIUrl":"https://doi.org/10.1090/mcom/3875","url":null,"abstract":"We show error estimates for a cut finite element approximation of a second order elliptic problem with mixed boundary conditions. The error estimates are of low regularity type where we consider the case when the exact solution <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u element-of upper H Superscript s\"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">u in H^s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s element-of left-parenthesis 1 comma 3 slash 2 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">sin (1,3/2]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For Nitsche type methods this case requires special handling of the terms involving the normal flux of the exact solution at the the boundary. For Dirichlet boundary conditions the estimates are optimal, whereas in the case of mixed Dirichlet-Neumann boundary conditions they are suboptimal by a logarithmic factor.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135840481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}