对称函数的多项式近似

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Markus Bachmayr, Geneviève Dusson, Christoph Ortner
{"title":"对称函数的多项式近似","authors":"Markus Bachmayr, Geneviève Dusson, Christoph Ortner","doi":"10.1090/mcom/3868","DOIUrl":null,"url":null,"abstract":"We study the polynomial approximation of symmetric multivariate functions and of multi-set functions. Specifically, we consider <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis x 1 comma ellipsis comma x Subscript upper N Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>N</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(x_1, \\dots , x_N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x Subscript i Baseline element-of double-struck upper R Superscript d\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x_i \\in \\mathbb {R}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is invariant under permutations of its <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> arguments. We demonstrate how these symmetries can be exploited to improve the cost versus error ratio in a polynomial approximation of the function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and in particular study the dependence of that ratio on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d comma upper N\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d, N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the polynomial degree. These results are then used to construct approximations and prove approximation rates for functions defined on multi-sets where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> becomes a parameter of the input.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial approximation of symmetric functions\",\"authors\":\"Markus Bachmayr, Geneviève Dusson, Christoph Ortner\",\"doi\":\"10.1090/mcom/3868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the polynomial approximation of symmetric multivariate functions and of multi-set functions. Specifically, we consider <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f left-parenthesis x 1 comma ellipsis comma x Subscript upper N Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>N</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">f(x_1, \\\\dots , x_N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"x Subscript i Baseline element-of double-struck upper R Superscript d\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">x_i \\\\in \\\\mathbb {R}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f\\\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is invariant under permutations of its <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> arguments. We demonstrate how these symmetries can be exploited to improve the cost versus error ratio in a polynomial approximation of the function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f\\\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and in particular study the dependence of that ratio on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d comma upper N\\\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">d, N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the polynomial degree. These results are then used to construct approximations and prove approximation rates for functions defined on multi-sets where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> becomes a parameter of the input.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

研究了对称多元函数和多集函数的多项式逼近问题。具体地说,我们考虑f(x 1,…,x N) f(x_1, \dots, x_N),其中x i∈R d x_i \in \mathbb {R}^d, f f在其N N个参数的置换下是不变的。我们演示了如何利用这些对称性来提高函数f的多项式近似中的成本与错误率,并特别研究了该比率对d, N, N和多项式度的依赖。然后,这些结果用于构造近似并证明在多集上定义的函数的近似率,其中N N成为输入的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial approximation of symmetric functions
We study the polynomial approximation of symmetric multivariate functions and of multi-set functions. Specifically, we consider f ( x 1 , , x N ) f(x_1, \dots , x_N) , where x i R d x_i \in \mathbb {R}^d , and f f is invariant under permutations of its N N arguments. We demonstrate how these symmetries can be exploited to improve the cost versus error ratio in a polynomial approximation of the function f f , and in particular study the dependence of that ratio on d , N d, N and the polynomial degree. These results are then used to construct approximations and prove approximation rates for functions defined on multi-sets where N N becomes a parameter of the input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信