Low regularity estimates for CutFEM approximations of an elliptic problem with mixed boundary conditions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Erik Burman, Peter Hansbo, Mats G. Larson
{"title":"Low regularity estimates for CutFEM approximations of an elliptic problem with mixed boundary conditions","authors":"Erik Burman, Peter Hansbo, Mats G. Larson","doi":"10.1090/mcom/3875","DOIUrl":null,"url":null,"abstract":"We show error estimates for a cut finite element approximation of a second order elliptic problem with mixed boundary conditions. The error estimates are of low regularity type where we consider the case when the exact solution <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u element-of upper H Superscript s\"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">u \\in H^s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s element-of left-parenthesis 1 comma 3 slash 2 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s\\in (1,3/2]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For Nitsche type methods this case requires special handling of the terms involving the normal flux of the exact solution at the the boundary. For Dirichlet boundary conditions the estimates are optimal, whereas in the case of mixed Dirichlet-Neumann boundary conditions they are suboptimal by a logarithmic factor.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We show error estimates for a cut finite element approximation of a second order elliptic problem with mixed boundary conditions. The error estimates are of low regularity type where we consider the case when the exact solution u H s u \in H^s with s ( 1 , 3 / 2 ] s\in (1,3/2] . For Nitsche type methods this case requires special handling of the terms involving the normal flux of the exact solution at the the boundary. For Dirichlet boundary conditions the estimates are optimal, whereas in the case of mixed Dirichlet-Neumann boundary conditions they are suboptimal by a logarithmic factor.
混合边界条件下椭圆型问题的低正则性估计
给出了具有混合边界条件的二阶椭圆型问题的切割有限元近似的误差估计。误差估计是低正则型的,我们考虑当精确解u∈H s u \in H^s与s∈(1,3/2)s\in(1,3/2)的情况。对于Nitsche型方法,这种情况需要对涉及精确解在边界处的法向通量的项进行特殊处理。对于狄利克雷边界条件,估计是最优的,而在混合狄利克雷-诺伊曼边界条件的情况下,它们是次优的对数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信