{"title":"Weak discrete maximum principle of isoparametric finite element methods in curvilinear polyhedra","authors":"Buyang Li, Weifeng Qiu, Yupei Xie, Wenshan Yu","doi":"10.1090/mcom/3876","DOIUrl":null,"url":null,"abstract":"The weak maximum principle of the isoparametric finite element method is proved for the Poisson equation under the Dirichlet boundary condition in a (possibly concave) curvilinear polyhedral domain with edge openings smaller than <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which include smooth domains and smooth deformations of convex polyhedra. The proof relies on the analysis of a dual elliptic problem with a discontinuous coefficient matrix arising from the isoparametric finite elements. Therefore, the standard <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H squared\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> elliptic regularity which is required in the proof of the weak maximum principle in the literature does not hold for this dual problem. To overcome this difficulty, we have decomposed the solution into a smooth part and a nonsmooth part, and estimated the two parts by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H squared\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W Superscript 1 comma p\"> <mml:semantics> <mml:msup> <mml:mi>W</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">W^{1,p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> estimates, respectively. As an application of the weak maximum principle, we have proved a maximum-norm best approximation property of the isoparametric finite element method for the Poisson equation in a curvilinear polyhedron. The proof contains non-trivial modifications of Schatz’s argument due to the nonconformity of the iso-parametric finite elements, which requires us to construct a globally smooth flow map which maps the curvilinear polyhedron to a perturbed larger domain on which we can establish the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W Superscript 1 comma normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>W</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">W^{1,\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> regularity estimate of the Poisson equation uniformly with respect to the perturbation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The weak maximum principle of the isoparametric finite element method is proved for the Poisson equation under the Dirichlet boundary condition in a (possibly concave) curvilinear polyhedral domain with edge openings smaller than π\pi, which include smooth domains and smooth deformations of convex polyhedra. The proof relies on the analysis of a dual elliptic problem with a discontinuous coefficient matrix arising from the isoparametric finite elements. Therefore, the standard H2H^2 elliptic regularity which is required in the proof of the weak maximum principle in the literature does not hold for this dual problem. To overcome this difficulty, we have decomposed the solution into a smooth part and a nonsmooth part, and estimated the two parts by H2H^2 and W1,pW^{1,p} estimates, respectively. As an application of the weak maximum principle, we have proved a maximum-norm best approximation property of the isoparametric finite element method for the Poisson equation in a curvilinear polyhedron. The proof contains non-trivial modifications of Schatz’s argument due to the nonconformity of the iso-parametric finite elements, which requires us to construct a globally smooth flow map which maps the curvilinear polyhedron to a perturbed larger domain on which we can establish the W1,∞W^{1,\infty } regularity estimate of the Poisson equation uniformly with respect to the perturbation.