{"title":"一个简单的基础的斯蒂克尔伯格理想的环切场","authors":"Olivier Bernard, Radan Kučera","doi":"10.1090/mcom/3863","DOIUrl":null,"url":null,"abstract":"We exhibit an explicit <italic>short</italic> basis of the Stickelberger ideal of cyclotomic fields of any conductor <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, i.e., a basis containing only short elements. An element <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma-summation Underscript sigma element-of upper G Subscript m Endscripts epsilon Subscript sigma Baseline sigma\"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:mrow> </mml:munder> <mml:msub> <mml:mi>ε<!-- ε --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sum _{\\sigma \\in G_m} \\varepsilon _{\\sigma }\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the group ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z left-bracket upper G Subscript m Baseline right-bracket\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}[G_{m}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G Subscript m\"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>m</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">G_m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Galois group of the field, is said to be short if all of its coefficients <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon Subscript sigma\"> <mml:semantics> <mml:msub> <mml:mi>ε<!-- ε --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\varepsilon _{\\sigma }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a direct practical consequence, we deduce from this short basis an <italic>explicit</italic> upper bound on the relative class number that is valid for <italic>any</italic> conductor. This basis also has several concrete applications, in particular for the cryptanalysis of the Shortest Vector Problem on Ideal Lattices.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A short basis of the Stickelberger ideal of a cyclotomic field\",\"authors\":\"Olivier Bernard, Radan Kučera\",\"doi\":\"10.1090/mcom/3863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit an explicit <italic>short</italic> basis of the Stickelberger ideal of cyclotomic fields of any conductor <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, i.e., a basis containing only short elements. An element <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma-summation Underscript sigma element-of upper G Subscript m Endscripts epsilon Subscript sigma Baseline sigma\\\"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:mrow> </mml:munder> <mml:msub> <mml:mi>ε<!-- ε --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sum _{\\\\sigma \\\\in G_m} \\\\varepsilon _{\\\\sigma }\\\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the group ring <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z left-bracket upper G Subscript m Baseline right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}[G_{m}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G Subscript m\\\"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>m</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">G_m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Galois group of the field, is said to be short if all of its coefficients <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon Subscript sigma\\\"> <mml:semantics> <mml:msub> <mml:mi>ε<!-- ε --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varepsilon _{\\\\sigma }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1\\\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a direct practical consequence, we deduce from this short basis an <italic>explicit</italic> upper bound on the relative class number that is valid for <italic>any</italic> conductor. This basis also has several concrete applications, in particular for the cryptanalysis of the Shortest Vector Problem on Ideal Lattices.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A short basis of the Stickelberger ideal of a cyclotomic field
We exhibit an explicit short basis of the Stickelberger ideal of cyclotomic fields of any conductor mm, i.e., a basis containing only short elements. An element ∑σ∈Gmεσσ\sum _{\sigma \in G_m} \varepsilon _{\sigma }\sigma of the group ring Z[Gm]\mathbb {Z}[G_{m}], where GmG_m is the Galois group of the field, is said to be short if all of its coefficients εσ\varepsilon _{\sigma } are 00 or 11. As a direct practical consequence, we deduce from this short basis an explicit upper bound on the relative class number that is valid for any conductor. This basis also has several concrete applications, in particular for the cryptanalysis of the Shortest Vector Problem on Ideal Lattices.