一个简单的基础的斯蒂克尔伯格理想的环切场

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Olivier Bernard, Radan Kučera
{"title":"一个简单的基础的斯蒂克尔伯格理想的环切场","authors":"Olivier Bernard, Radan Kučera","doi":"10.1090/mcom/3863","DOIUrl":null,"url":null,"abstract":"We exhibit an explicit <italic>short</italic> basis of the Stickelberger ideal of cyclotomic fields of any conductor <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, i.e., a basis containing only short elements. An element <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma-summation Underscript sigma element-of upper G Subscript m Endscripts epsilon Subscript sigma Baseline sigma\"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:mrow> </mml:munder> <mml:msub> <mml:mi>ε<!-- ε --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sum _{\\sigma \\in G_m} \\varepsilon _{\\sigma }\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the group ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z left-bracket upper G Subscript m Baseline right-bracket\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}[G_{m}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G Subscript m\"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>m</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">G_m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Galois group of the field, is said to be short if all of its coefficients <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon Subscript sigma\"> <mml:semantics> <mml:msub> <mml:mi>ε<!-- ε --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\varepsilon _{\\sigma }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a direct practical consequence, we deduce from this short basis an <italic>explicit</italic> upper bound on the relative class number that is valid for <italic>any</italic> conductor. This basis also has several concrete applications, in particular for the cryptanalysis of the Shortest Vector Problem on Ideal Lattices.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A short basis of the Stickelberger ideal of a cyclotomic field\",\"authors\":\"Olivier Bernard, Radan Kučera\",\"doi\":\"10.1090/mcom/3863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit an explicit <italic>short</italic> basis of the Stickelberger ideal of cyclotomic fields of any conductor <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, i.e., a basis containing only short elements. An element <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma-summation Underscript sigma element-of upper G Subscript m Endscripts epsilon Subscript sigma Baseline sigma\\\"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:mrow> </mml:munder> <mml:msub> <mml:mi>ε<!-- ε --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sum _{\\\\sigma \\\\in G_m} \\\\varepsilon _{\\\\sigma }\\\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the group ring <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z left-bracket upper G Subscript m Baseline right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}[G_{m}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G Subscript m\\\"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>m</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">G_m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Galois group of the field, is said to be short if all of its coefficients <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon Subscript sigma\\\"> <mml:semantics> <mml:msub> <mml:mi>ε<!-- ε --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varepsilon _{\\\\sigma }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1\\\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a direct practical consequence, we deduce from this short basis an <italic>explicit</italic> upper bound on the relative class number that is valid for <italic>any</italic> conductor. This basis also has several concrete applications, in particular for the cryptanalysis of the Shortest Vector Problem on Ideal Lattices.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了任意导体m m的旋切场的Stickelberger理想的显式短基,即只包含短元素的基。群环Z[G m] \mathbb Z[G_m]中的一个元素∑σ∈G m ε σ σ \sum{ _ }{\sigma}{}{\in} G_m \varepsilon{ _ }{\sigma}\sigma,其中G m G_m是场的伽罗瓦群,如果它的所有系数ε σ {}{}\varepsilon _ {\sigma都是0 0或11,则称其为短。作为一个直接的实际结果,我们从这个短基中推导出对任何导体都有效的相对类数的明确上界。这个基础也有几个具体的应用,特别是对理想格上最短向量问题的密码分析。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A short basis of the Stickelberger ideal of a cyclotomic field
We exhibit an explicit short basis of the Stickelberger ideal of cyclotomic fields of any conductor m m , i.e., a basis containing only short elements. An element σ G m ε σ σ \sum _{\sigma \in G_m} \varepsilon _{\sigma }\sigma of the group ring Z [ G m ] \mathbb {Z}[G_{m}] , where G m G_m is the Galois group of the field, is said to be short if all of its coefficients ε σ \varepsilon _{\sigma } are 0 0 or 1 1 . As a direct practical consequence, we deduce from this short basis an explicit upper bound on the relative class number that is valid for any conductor. This basis also has several concrete applications, in particular for the cryptanalysis of the Shortest Vector Problem on Ideal Lattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信