A Ramanujan integral and its derivatives: computation and analysis

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Walter Gautschi, Gradimir Milovanovic
{"title":"A Ramanujan integral and its derivatives: computation and analysis","authors":"Walter Gautschi, Gradimir Milovanovic","doi":"10.1090/mcom/3892","DOIUrl":null,"url":null,"abstract":"The principal tool of computation used in this paper is classical Gaussian quadrature on the interval [0,1], which happens to be particularly effective here. Explicit expressions are found for the derivatives of the Ramanujan integral in question, and it is proved that the latter is completely monotone on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 0 comma normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(0,\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a byproduct, known series expansions for incomplete gamma functions are examined with regard to their convergence properties. The paper also pays attention to another famous integral, the Euler integral — better known as the gamma function — revitalizing a largely neglected part of the function, the part corresponding to negative values of the argument, which plays a prominent role in our work.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The principal tool of computation used in this paper is classical Gaussian quadrature on the interval [0,1], which happens to be particularly effective here. Explicit expressions are found for the derivatives of the Ramanujan integral in question, and it is proved that the latter is completely monotone on ( 0 , ) (0,\infty ) . As a byproduct, known series expansions for incomplete gamma functions are examined with regard to their convergence properties. The paper also pays attention to another famous integral, the Euler integral — better known as the gamma function — revitalizing a largely neglected part of the function, the part corresponding to negative values of the argument, which plays a prominent role in our work.
拉马努金积分及其导数:计算与分析
本文使用的主要计算工具是区间[0,1]上的经典高斯正交,它在这里特别有效。得到了所讨论的Ramanujan积分的导数的显式表达式,并证明了Ramanujan积分在(0,∞)(0,\infty)上是完全单调的。作为一个副产品,已知的不完全函数的级数展开式是关于其收敛性的。本文还关注了另一个著名的积分,欧拉积分-更广为人知的是伽马函数-重新激活了函数中很大程度上被忽视的部分,即对应于参数负值的部分,这部分在我们的工作中起着突出的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信