{"title":"A Ramanujan integral and its derivatives: computation and analysis","authors":"Walter Gautschi, Gradimir Milovanovic","doi":"10.1090/mcom/3892","DOIUrl":null,"url":null,"abstract":"The principal tool of computation used in this paper is classical Gaussian quadrature on the interval [0,1], which happens to be particularly effective here. Explicit expressions are found for the derivatives of the Ramanujan integral in question, and it is proved that the latter is completely monotone on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 0 comma normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(0,\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a byproduct, known series expansions for incomplete gamma functions are examined with regard to their convergence properties. The paper also pays attention to another famous integral, the Euler integral — better known as the gamma function — revitalizing a largely neglected part of the function, the part corresponding to negative values of the argument, which plays a prominent role in our work.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"15 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3892","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The principal tool of computation used in this paper is classical Gaussian quadrature on the interval [0,1], which happens to be particularly effective here. Explicit expressions are found for the derivatives of the Ramanujan integral in question, and it is proved that the latter is completely monotone on (0,∞)(0,\infty ). As a byproduct, known series expansions for incomplete gamma functions are examined with regard to their convergence properties. The paper also pays attention to another famous integral, the Euler integral — better known as the gamma function — revitalizing a largely neglected part of the function, the part corresponding to negative values of the argument, which plays a prominent role in our work.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.