Qingsen Gao, Xin Wang, Dirk W. Schubert, Xianhu Liu
{"title":"Electrospun Thermoplastic Polyurethane Fibrous Membrane Decorated with MXene/Carbon Black for Dual-Mode Human Movement Monitoring and Energy Harvesting","authors":"Qingsen Gao, Xin Wang, Dirk W. Schubert, Xianhu Liu","doi":"10.1002/mame.202400357","DOIUrl":"https://doi.org/10.1002/mame.202400357","url":null,"abstract":"<p>Conductive fiber membranes have received widespread attention due to their excellent physical and chemical properties. However, developing conductive fiber membranes for both strain sensing and energy harvesting remains a challenge. Herein, a novel thermoplastic polyurethane (TPU)/polydopamine (PDA)/MXene/carbon black (CB) (TPMC) conductive fibrous membrane is developed by combining electrospinning and layer-by-layer dip-coating processes. The TPMC fibrous membrane can be used as a component of strain sensors and triboelectric nanogenerators (TENG) to achieve dual-mode human motion detection and energy harvesting. The strain sensor boasts a wide operating range (0.5%-195%), excellent sensitivity (with a gauge factor (GF) up to 54 at 50% strain and maximum GF of 6.5×10<sup>4</sup>), fast response (80 ms) and excellent cycle durability (over 10 000 cycles), making it possible to detect slight or heavy human activities under various conditions effectively. Additionally, a single-electrode TENG utilizing the TPMC membrane achieves an output voltage of 115 V, a current of 0.8 µA, and a power density of 68 mW m⁻<sup>2</sup>, also serving as a self-powered sensor for various movements. The excellent dual-mode sensing and energy harvesting properties make it promising for future high-performance wearable devices.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400357","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143831469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong-fei Wang, Gang Zhao, Sigen A, Qian Xu, Xiao-li Wu, Wen-Xin Wang, Yong-jun Rui
{"title":"In Situ Forming Hypoxia-Induced Exosome-Loaded Hydrogel for Enhanced Diabetic Wound Healing","authors":"Yong-fei Wang, Gang Zhao, Sigen A, Qian Xu, Xiao-li Wu, Wen-Xin Wang, Yong-jun Rui","doi":"10.1002/mame.202400402","DOIUrl":"https://doi.org/10.1002/mame.202400402","url":null,"abstract":"<p>Diabetic wound healing presents unique challenges, including impaired angiogenesis, prolonged inflammation, and delayed re-epithelialization. Advancements in tissue engineering offer promising solutions through cell/drug-based therapies. Exosomes (Exo) derived from hypoxia-preconditioned adipose-derived stem cells (ADSCs) have gained attention for their potential to address these complex issues in diabetic wounds. Existing strategies for Exo delivery aim to overcome drawbacks associated with conventional administration methods, including rapid loss of activity, frequent dosing, and off-target effects. However, complexities in fabrication, undesirable components within the delivery system, and unforeseen outcomes have hindered the efficacy of these approaches. Thus, an in situ formed hydrogel is engineered using click chemistry to facilitate the convenient encapsulation of hypoxia-induced Exo. The hydrogel swiftly transitioned into a gel state upon mixing and facilitated the controlled release of Exo at various loading dosages. Through systematic screening of Exo-hydrogel formulations, it is demonstrated that the encapsulated Exo retained their bioactivity, exhibits therapeutic efficacy in vitro via scratch and tube formation assays. Further, the optimal Exo-hydrogel promotes accelerated wound healing while preventing scar formation in a diabetic rat wound model. The Exo-loaded hydrogel represents a promising approach for efficient Exo delivery in wound healing applications and holds potential for broader applications in diverse medical fields.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 5","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400402","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144074289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philipp Zimmermann, Christoph Schammel, Jürgen Nagel
{"title":"Additive Manufacturing of Watertight ABS Parts and Its Use for Chemical Metal Plating","authors":"Philipp Zimmermann, Christoph Schammel, Jürgen Nagel","doi":"10.1002/mame.202400367","DOIUrl":"https://doi.org/10.1002/mame.202400367","url":null,"abstract":"<p>One of the most frequently used polymers in the galvanic industry as well as for Fused Filament Fabrication (FFF) is the terpolymer of acrylonitrile butadiene styrene (ABS). Its surface is etched in chromosulfuric acid to enable the chemical deposition of a metal. The use of chromium (Cr)(VI) compounds is restricted in the European Union (EU) since 2017. A new plating process is proposed here that does not rely on etching. Instead, double bonds on the ABS surface are converted to epoxides, followed by grafting of a polyethylenimine (PEI) to the surface. The so modified plastic is an ideal starting point for metal plating. Printing often leads to the formation of voids between strands and layers, which hinders subsequent wet processing. The plating process introduced here requires high demands on the water tightness of parts. The proposed printing procedure reduces the degree of penetration of water from 50% to less than 0.1% at 2 bar water pressure. The combination of the new printing procedure with the new plating process results in the deposition of industrial relevant nickel (Ni) layers. The cross-hatch test followed by a peel test exhibits values of zero, pointing to the high adhesion of Ni to ABS.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400367","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143831121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and Evaluation of Poly(Lactic-Co-Glycolic Acid) Encapsulated Betulinic Acid Nanocarrier for Improved Anti-Tumor Efficacy","authors":"Cyril Tlou Selepe, Khanyisile Sheer Dhlamini, Lesego Tshweu, Lusisizwe Kwezi, Bathabile Ramalapa, Suprakas Sinha Ray","doi":"10.1002/mame.202400283","DOIUrl":"https://doi.org/10.1002/mame.202400283","url":null,"abstract":"<p>Betulinic acid (BA) is a promising natural anti-tumor agent renowned for its activity against various tumor cell types. Despite its favorable profile of low cytotoxicity to normal cells, BA's inherent hydrophobic nature and relatively short systematic half-life impose hurdles for clinical application. This study introduces a strategy to surmount these obstacles by developing a drug delivery system employing poly(lactic-co-glycolic acid) (PLGA)-encapsulated BA nanoparticles (PLGA-BA NPs). Rigorous characterization techniques such as dynamic light scattering (DLS), x-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses are employed to confirm the integrity of the drug within the nanocarriers. The PLGA-BA NPs demonstrated a mean particle size of 196 ± 6.80 nm. XRD analysis demonstrated the amorphous state of the PLGA-BA formulation, a characteristic vital for sustained drug release and enhanced bioavailability. The PLGA-BA NPs exhibited spherical morphology with encapsulation and loading efficiency of 83 ± 9.24% and 7.0 ± 0.4%, respectively, highlighting efficient encapsulation of the drug within the PLGA NPs. In vitro, cytotoxicity assessments demonstrated enhanced anti-proliferative efficacy against breast and lung tumor cells when utilizing PLGA-BA NPs in comparison to free BA. This research underlines the potential of employing the developed PLGA-based nanocarrier to optimize the therapeutic efficacy of BA.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400283","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Speckle Pattern Analysis of PVK:rGO Composite Based Memristor Device","authors":"Ramin Jamali, Madeh Sajjadi, Babak Taherkhani, Davood Abbaszadeh, Ali-Reza Moradi","doi":"10.1002/mame.202470023","DOIUrl":"https://doi.org/10.1002/mame.202470023","url":null,"abstract":"<p><b>Front Cover</b>: In article 2400213, Davood Abbaszadeh, Ali-Reza Moradi, and co-workers demonstrate the innovative approach of speckle pattern statistical analysis for memristor devices characterization while they are in operation. The method is non-invasive, remote, and probeless. Analyzing the speckle patterns of PVK:rGO memristors in their ON/OFF states provides insights into resistance mechanism and information on the distribution of charge carriers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 12","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dennis Schröder, Jannik Thanner, Klaus Kreger, Hans-Werner Schmidt
{"title":"Hierarchical Glass Fiber Superstructures with Supramolecular Nanofibers for the Nucleation of Isotactic Polypropylene","authors":"Dennis Schröder, Jannik Thanner, Klaus Kreger, Hans-Werner Schmidt","doi":"10.1002/mame.202400389","DOIUrl":"https://doi.org/10.1002/mame.202400389","url":null,"abstract":"<p>Supramolecular additives are an established class of nucleating agents to modify and control the solid-state morphology of semi-crystalline polymers, in particular isotactic polypropylene (iPP). A widely used reinforcement material for iPP is glass fibers (GFs), which significantly improve the mechanical properties. Here, these two types of materials are combined by creating defined hierarchical superstructures composed of glass microfiber nonwovens and supramolecular nanofibers based on selected 1,3,5-benzetrisamides (BTA). The supramolecular nanofibers are prepared by physical vapor deposition (PVD), a straightforward solvent-free process. By systematically varying PVD process parameters, it is shown that supramolecular BTA nanofibers can be reproducibly prepared on flat substrates. The morphology of the supramolecular nanofibers can be controlled by substrate temperature, evaporation time, and evaporation rate. The use of GF nonwovens enables the fabrication of hierarchical superstructures with a bottlebrush morphology comprising supramolecular nanofibers of defined length. These hierarchical superstructures are capable of nucleating iPP and thus promote transcrystallization of the iPP from the decorated GFs surface, which ultimately improves the adhesion between the GFs and the iPP. Laminating decorated GF nonwovens between two iPP films clearly increases the mechanical properties of the composites in contrast to composites without nucleating agents.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 5","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400389","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144074243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahra Shahroodi, Vahid Momeni, Ali Moshkriz, Nariman Rajabifar, Reza Darvishi
{"title":"Mechanical and Morphological Perspectives on PLA-Based Thermoplastic Vulcanizates (TPVs): A Brief Review","authors":"Zahra Shahroodi, Vahid Momeni, Ali Moshkriz, Nariman Rajabifar, Reza Darvishi","doi":"10.1002/mame.202400209","DOIUrl":"https://doi.org/10.1002/mame.202400209","url":null,"abstract":"<p>Poly(lactic acid) (PLA) brings intriguing prospects to the realm of biodegradable polymers through environmental sustainability, processing, and affordability. However, the widespread use of PLA remains full of challenges mostly because of its brittleness and poor mechanical properties. This review highlighted recent studies on improving PLA brittleness by adding different elastomeric systems and using different crosslinking systems in order to improve the mechanical properties, enhance the interfacial interactions, and stabilize the micromorphology of PLA systems as an effective, promising strategy to mitigate intrinsic PLA problems. Looking at the different microstructures required to achieve better performance, an insightful discussion on the developed morphology between PLA and high-elastic materials is featured along with reviewing primary mechanical concepts. It concludes with an outlook for static and dynamic vulcanization systems with a perspective of biodegradable PLA and draws attention to the new possibilities that crosslinked PLA can offer.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400209","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of Block Copolymers Utilizing Alkoxycarbonylation or Aminocarbonylation of Growing Chain End in Pd-Catalyzed Living Polymerization of Olefins","authors":"Daisuke Takeuchi, Kohsuke Ohta, Yuta Kimura","doi":"10.1002/mame.202400358","DOIUrl":"https://doi.org/10.1002/mame.202400358","url":null,"abstract":"<p>Diimine Pd catalysts have been known to promote the living polymerization of olefins. Treatment of the living polyolefin with carbon monoxide followed by the addition of alcohols or amines results in alkoxycarbonylation or aminocarbonylation of the living chain end. The alkoxycarbonylation or aminocarbonylation using polymers having hydroxy or amino terminal group leads to direct linking of the end-functionalized polymer with the living polyolefins. The introduction of hydroxy, amino, and 2-bromoisobutyrate functional groups on the terminal of the polyolefin is also possible by the alkoxycarbonylation or aminocarbonylation. The end-functionalized polyolefin having 2-bromoisobutyryl terminal group acts as a macroinitiator for living radical polymerization of styrene to give poly(olefin-<i>block</i>-styrene).</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400358","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural and Optical Anomalies in Thin Films Grown in a Magnetic Field by Electron-Assisted Vacuum Deposition of PTFE","authors":"Viachaslau Ksianzou, Claus Villringer, Kostyantyn Grytsenko, Demyd Pekur, Petro Lytvyn, Mykola Sopinskyy, Iryna Lebedyeva, Agata Niemczyk, Jolanta Baranowska","doi":"10.1002/mame.202400332","DOIUrl":"https://doi.org/10.1002/mame.202400332","url":null,"abstract":"<p>Polytetrafluoroethylene (PTFE) films are deposited in parallel and perpendicular magnetic fields (MF) by electron-enhanced vacuum deposition (EVD) and EVD + low-temperature plasma (LTP) methods. The structure, morphology, and nanomechanical properties of the films are studied by infrared spectroscopy (IRS), atomic force microscopy (AFM), and spectroscopic ellipsometry. The structure of the thicker films is closer to that of bulk PTFE than that of thin films. The films' crystallinity and surface roughness are higher than those deposited without MF. The birefringence of the refractive index (n) of the films deposited in the MF is inverse to the anisotropy of the n of the films deposited without MF. The hardness of the films is close to that of bulk PTFE.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 3","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400332","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}