{"title":"PLA Double-Spirals Offering Enhanced Spatial Extensibility","authors":"Mohsen Jafarpour, Stanislav N. Gorb","doi":"10.1002/mame.202570012","DOIUrl":"https://doi.org/10.1002/mame.202570012","url":null,"abstract":"<p><b>Back Cover</b>: Inspired by natural spiral curves, 3D-printed PLA double-spiral modules have been designed to balance extensibility and load-bearing capacity in brittle materials. These modules possess tunable mechanical properties and strong anisotropic behavior, highlighting their potential in developing spatially extensible, energy-dissipative metastructures. More details can be found in the article 2400208 by Mohsen Jafarpour and Stanislav N. Gorb.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202570012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143831119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of Block Copolymers Utilizing Alkoxycarbonylation or Aminocarbonylation of Growing Chain End in Pd-Catalyzed Living Polymerization of Olefins","authors":"Daisuke Takeuchi, Kohsuke Ohta, Yuta Kimura","doi":"10.1002/mame.202570011","DOIUrl":"https://doi.org/10.1002/mame.202570011","url":null,"abstract":"<p><b>Front Cover</b>: Alkoxycarbonylation or aminocarbonylation of living polyolefin, produced by diimine Pd catalysts, allows direct linking of the polyolefin with end-functionalized polymers. It also enables the introduction of initiating group for radical polymerization to the terminal of the living polyolefin and the synthesis of block copolymers of olefin and non-olefin monomers. More details can be found in article 2400358 by Daisuke Takeuchi and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202570011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143831126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ece Guler, Humeyra Betul Yekeler, Burcu Uner, Murat Dogan, Asima Asghar, Fakhera Ikram, Yusufhan Yazir, Oguzhan Gunduz, Deepak M Kalaskar, Muhammet Emin Cam
{"title":"In Vitro Neuroprotective Effect Evaluation of Donepezil-Loaded PLGA Nanoparticles-Embedded PVA/PEG Nanofibers on SH-SY5Y Cells and AP-APP Plasmid Related Alzheimer Cell Line Model","authors":"Ece Guler, Humeyra Betul Yekeler, Burcu Uner, Murat Dogan, Asima Asghar, Fakhera Ikram, Yusufhan Yazir, Oguzhan Gunduz, Deepak M Kalaskar, Muhammet Emin Cam","doi":"10.1002/mame.202570008","DOIUrl":"https://doi.org/10.1002/mame.202570008","url":null,"abstract":"<p><b>Inside front cover</b>:: In article 2400160, Deepak M Kalaskar, Muhammet Emin Cam, and co-workers present the anti-Alzheimer effects of donepezil (DO)-loaded PLGA nanoparticles (DNP)-embedded PVA/PEG nanofibers (DNPF), which are evaluated on Aβ<sub>1−42</sub>-induced SH-SY5Y human neuroblastoma cells at different concentration. Designed by Ece Guler and drawn by Bilge Tuzcu.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 3","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202570008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed Alneyadi, Angelo Delbusso, Anthony Harker, Mohan Edirisinghe
{"title":"Design Optimization of Pressurized Gyration Technology: Orifice Height Level Effects on Production Rate and Fiber Morphology","authors":"Ahmed Alneyadi, Angelo Delbusso, Anthony Harker, Mohan Edirisinghe","doi":"10.1002/mame.202570007","DOIUrl":"https://doi.org/10.1002/mame.202570007","url":null,"abstract":"<p><b>Front Cover</b>: Depicted by this high-speed camera image, pressurised gyration is ideal for economical and easy rapid manufacturing of polymer fibres. Features of the gyration vessel, in particular the location of fibre generating orifices, needs optimisation. In article 2400317, Mohan Edirisinghe and co-workers experimentally compare the orifice placement at three heights, and the lowest gives highest production efficiency. \u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 3","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202570007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saeed Ismaeilimoghadam, Bahareh Azimi, Mehdi Jonoobi, Serena Danti
{"title":"Highly Performing Polysaccharide Hydrogels can Replace Acrylic Acid-Based Superabsorbent Polymers in Sanitary Napkins","authors":"Saeed Ismaeilimoghadam, Bahareh Azimi, Mehdi Jonoobi, Serena Danti","doi":"10.1002/mame.202570010","DOIUrl":"https://doi.org/10.1002/mame.202570010","url":null,"abstract":"<p><b>Back Cover</b>: Sodium alginate (SA)-based super absorbent polymers (SAPs) show an excellent performance for menstrual fluid absorption due to the covalent and hydrogen bonds, in addition to the electrostatic interaction between SA functional groups and amino acids in blood. Although SA-based SAPs have lower water absorption capacity than acrylic acid (AA)-based SAPs, they can replace traditional AA-based SAPs in sanitary napkins. More details can be found in article 2400278 by Mehdi Jonoobi, Serena Danti, and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 3","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202570010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cerium Oxide Decorated Graphene Nanolayers Filled Polyvinylidene Fluoride Nanofibers as Optical Piezoelectric Sensors","authors":"Nour Bader, Swathi Yempally, Firas Al-Ashker, Maryam Al-Ejji, Deepalekshmi Ponnamma","doi":"10.1002/mame.202400350","DOIUrl":"https://doi.org/10.1002/mame.202400350","url":null,"abstract":"<p>This article introduces the fabrication of optical piezoelectric sensors using cerium oxide (CeO)-decorated graphene nanolayers incorporated into polyvinylidene fluoride hexafluoropropylene (PVDF-HFP) fibers. Electrospinning method is employed to create the composite nanofibers, resulting in a highly aligned and consistent fibrous structure. Graphene nanolayers are functionalized onto CeO nanoparticles using a rapid and scalable solution-based process. The resulting hybrid composite material exhibited superior piezoelectric characteristics compared to pure PVDF-HFP. A fiber Bragg grating sensor is integrated into the PVDF-HFP nanofiber composite to enable optical sensing. As a strain gauge, the sensor detected variations in fiber length caused by mechanical deformation. The addition of CeO-decorated graphene nanolayers enhanced the piezoelectric response of the PVDF-HFP nanofibers, producing an electrical signal proportional to the applied mechanical stress. The sensor's performance is evaluated under various mechanical stimuli, including compression, bending, and vibration. The sensor demonstrated excellent sensitivity, repeatability, and fast response times. The proposed optical piezoelectric sensor, based on PVDF-HFP nanofibers filled with CeO-decorated graphene nanolayers, shows great potential for applications in robotics, wearable electronics, and structural health monitoring. This sensor technology is highly appealing for next-generation smart materials and devices due to its enhanced piezoelectric properties, optical sensing capabilities, and mechanical resilience.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400350","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143831122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CO2-Responsive Copolymers for Membrane Applications, Synthesis, and Performance Evaluation","authors":"Emil Pashayev, Prokopios Georgopanos","doi":"10.1002/mame.202570006","DOIUrl":"https://doi.org/10.1002/mame.202570006","url":null,"abstract":"<p><b>Back Cover</b>: In article 2400290, Emil Pashayev and Prokopios Georgopanos present the design and synthesis of a carbon dioxide (CO<sub>2</sub>) responsive poly (N-[3-(dimethylamino)propyl]-acrylamide)-<i>b</i>-poly(methyl methacrylate) (PDMAPAm-<i>b</i>-PMMA) diblock copolymer via a two-step reversible addition–fragmentation chain-transfer (RAFT) polymerization, while also investigating the application of the synthesized polymer as a CO<sub>2</sub> membrane adsorber.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202570006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and Evaluation of Poly(Lactic-Co-Glycolic Acid) Encapsulated Betulinic Acid Nanocarrier for Improved Anti-Tumor Efficacy","authors":"Cyril Tlou Selepe, Khanyisile Sheer Dhlamini, Lesego Tshweu, Lusisizwe Kwezi, Bathabile Ramalapa, Suprakas Sinha Ray","doi":"10.1002/mame.202570004","DOIUrl":"https://doi.org/10.1002/mame.202570004","url":null,"abstract":"<p><b>Front Cover</b>: Natural anti-tumor agents are highly regarded for their low cytotoxicity towards healthy cells. However, their relatively short systematic half-life and low bioavailability impose hurdles for clinical application. This study introduces a strategy to surmount these obstacles by developing a drug delivery system employing biopolymeric emulsion techniques to optimize the therapeutic efficacy of a natural anti-tumor agent, betulinic acid. More details can be found in article 2400283 by Bathabile Ramalapa, Suprakas Sinha Ray, and co-workers. Suprakas Sinha Ray designed the cover art in collaboration with the team at INMYWORK Studio. \u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202570004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}