Macromolecular Materials and Engineering最新文献

筛选
英文 中文
Design Optimization of Pressurized Gyration Technology: Orifice Height Level Effects on Production Rate and Fiber Morphology
IF 4.2 3区 材料科学
Macromolecular Materials and Engineering Pub Date : 2025-01-02 DOI: 10.1002/mame.202400317
Ahmed Alneyadi, Angelo Delbusso, Anthony Harker, Mohan Edirisinghe
{"title":"Design Optimization of Pressurized Gyration Technology: Orifice Height Level Effects on Production Rate and Fiber Morphology","authors":"Ahmed Alneyadi,&nbsp;Angelo Delbusso,&nbsp;Anthony Harker,&nbsp;Mohan Edirisinghe","doi":"10.1002/mame.202400317","DOIUrl":"https://doi.org/10.1002/mame.202400317","url":null,"abstract":"<p>Electrospinning and pressurized gyration are two widely adopted methods for polymeric fiber production, valued for their simplicity, versatility, and relatively low environmental impact. Despite its advantages, electrospinning has notable limitations, including low production efficiency and significant safety concerns. Pressurized gyration, however, offers greater productivity and a safer, more sustainable process, making it an excellent candidate for industrial scaling. To fully realize this potential, optimizing the pressurized gyration process is essential for enhancing efficiency and achieving sustainable large-scale fiber production. In this study, the effects of vessel orifice height on the production rate and fiber morphology in pressurized gyration are explored. A series of experiments is conducted using a 15 wt.% polycaprolactone (PCL) solution, with vessels of identical diameter but differing orifice heights 7.5, 15, and 22.5 mm tested under pressures of 0, 0.1, 0.2, and 0.3 MPa, all at a constant rotational speed of 13 000 rpm. The 7.5 mm orifice height demonstrates the highest production rate under pressure while increasing orifice height led to finer fiber diameters, better alignment, and smaller beads. These findings underscore the importance of optimizing vessel design, along with process and solution parameters, for scaling up pressurized gyration fiber manufacturing to meet industrial demands.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 3","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400317","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Evaluation of Poly(Lactic-Co-Glycolic Acid) Encapsulated Betulinic Acid Nanocarrier for Improved Anti-Tumor Efficacy
IF 4.2 3区 材料科学
Macromolecular Materials and Engineering Pub Date : 2024-12-17 DOI: 10.1002/mame.202400283
Cyril Tlou Selepe, Khanyisile Sheer Dhlamini, Lesego Tshweu, Lusisizwe Kwezi, Bathabile Ramalapa, Suprakas Sinha Ray
{"title":"Development and Evaluation of Poly(Lactic-Co-Glycolic Acid) Encapsulated Betulinic Acid Nanocarrier for Improved Anti-Tumor Efficacy","authors":"Cyril Tlou Selepe,&nbsp;Khanyisile Sheer Dhlamini,&nbsp;Lesego Tshweu,&nbsp;Lusisizwe Kwezi,&nbsp;Bathabile Ramalapa,&nbsp;Suprakas Sinha Ray","doi":"10.1002/mame.202400283","DOIUrl":"https://doi.org/10.1002/mame.202400283","url":null,"abstract":"<p>Betulinic acid (BA) is a promising natural anti-tumor agent renowned for its activity against various tumor cell types. Despite its favorable profile of low cytotoxicity to normal cells, BA's inherent hydrophobic nature and relatively short systematic half-life impose hurdles for clinical application. This study introduces a strategy to surmount these obstacles by developing a drug delivery system employing poly(lactic-co-glycolic acid) (PLGA)-encapsulated BA nanoparticles (PLGA-BA NPs). Rigorous characterization techniques such as dynamic light scattering (DLS), x-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses are employed to confirm the integrity of the drug within the nanocarriers. The PLGA-BA NPs demonstrated a mean particle size of 196 ± 6.80 nm. XRD analysis demonstrated the amorphous state of the PLGA-BA formulation, a characteristic vital for sustained drug release and enhanced bioavailability. The PLGA-BA NPs exhibited spherical morphology with encapsulation and loading efficiency of 83 ± 9.24% and 7.0 ± 0.4%, respectively, highlighting efficient encapsulation of the drug within the PLGA NPs. In vitro, cytotoxicity assessments demonstrated enhanced anti-proliferative efficacy against breast and lung tumor cells when utilizing PLGA-BA NPs in comparison to free BA. This research underlines the potential of employing the developed PLGA-based nanocarrier to optimize the therapeutic efficacy of BA.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400283","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Macromol. Mater. Eng. 12/2024 报头:絮凝。板牙。Eng。12/2024
IF 4.2 3区 材料科学
Macromolecular Materials and Engineering Pub Date : 2024-12-16 DOI: 10.1002/mame.202470024
{"title":"Masthead: Macromol. Mater. Eng. 12/2024","authors":"","doi":"10.1002/mame.202470024","DOIUrl":"https://doi.org/10.1002/mame.202470024","url":null,"abstract":"","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 12","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speckle Pattern Analysis of PVK:rGO Composite Based Memristor Device PVK:rGO复合材料记忆电阻器件的散斑模式分析
IF 4.2 3区 材料科学
Macromolecular Materials and Engineering Pub Date : 2024-12-16 DOI: 10.1002/mame.202470023
Ramin Jamali, Madeh Sajjadi, Babak Taherkhani, Davood Abbaszadeh, Ali-Reza Moradi
{"title":"Speckle Pattern Analysis of PVK:rGO Composite Based Memristor Device","authors":"Ramin Jamali,&nbsp;Madeh Sajjadi,&nbsp;Babak Taherkhani,&nbsp;Davood Abbaszadeh,&nbsp;Ali-Reza Moradi","doi":"10.1002/mame.202470023","DOIUrl":"https://doi.org/10.1002/mame.202470023","url":null,"abstract":"<p><b>Front Cover</b>: In article 2400213, Davood Abbaszadeh, Ali-Reza Moradi, and co-workers demonstrate the innovative approach of speckle pattern statistical analysis for memristor devices characterization while they are in operation. The method is non-invasive, remote, and probeless. Analyzing the speckle patterns of PVK:rGO memristors in their ON/OFF states provides insights into resistance mechanism and information on the distribution of charge carriers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 12","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical and Morphological Perspectives on PLA-Based Thermoplastic Vulcanizates (TPVs): A Brief Review
IF 4.2 3区 材料科学
Macromolecular Materials and Engineering Pub Date : 2024-12-13 DOI: 10.1002/mame.202400209
Zahra Shahroodi, Vahid Momeni, Ali Moshkriz, Nariman Rajabifar, Reza Darvishi
{"title":"Mechanical and Morphological Perspectives on PLA-Based Thermoplastic Vulcanizates (TPVs): A Brief Review","authors":"Zahra Shahroodi,&nbsp;Vahid Momeni,&nbsp;Ali Moshkriz,&nbsp;Nariman Rajabifar,&nbsp;Reza Darvishi","doi":"10.1002/mame.202400209","DOIUrl":"https://doi.org/10.1002/mame.202400209","url":null,"abstract":"<p>Poly(lactic acid) (PLA) brings intriguing prospects to the realm of biodegradable polymers through environmental sustainability, processing, and affordability. However, the widespread use of PLA remains full of challenges mostly because of its brittleness and poor mechanical properties. This review highlighted recent studies on improving PLA brittleness by adding different elastomeric systems and using different crosslinking systems in order to improve the mechanical properties, enhance the interfacial interactions, and stabilize the micromorphology of PLA systems as an effective, promising strategy to mitigate intrinsic PLA problems. Looking at the different microstructures required to achieve better performance, an insightful discussion on the developed morphology between PLA and high-elastic materials is featured along with reviewing primary mechanical concepts. It concludes with an outlook for static and dynamic vulcanization systems with a perspective of biodegradable PLA and draws attention to the new possibilities that crosslinked PLA can offer.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400209","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and Optical Anomalies in Thin Films Grown in a Magnetic Field by Electron-Assisted Vacuum Deposition of PTFE
IF 4.2 3区 材料科学
Macromolecular Materials and Engineering Pub Date : 2024-12-09 DOI: 10.1002/mame.202400332
Viachaslau Ksianzou, Claus Villringer, Kostyantyn Grytsenko, Demyd Pekur, Petro Lytvyn, Mykola Sopinskyy, Iryna Lebedyeva, Agata Niemczyk, Jolanta Baranowska
{"title":"Structural and Optical Anomalies in Thin Films Grown in a Magnetic Field by Electron-Assisted Vacuum Deposition of PTFE","authors":"Viachaslau Ksianzou,&nbsp;Claus Villringer,&nbsp;Kostyantyn Grytsenko,&nbsp;Demyd Pekur,&nbsp;Petro Lytvyn,&nbsp;Mykola Sopinskyy,&nbsp;Iryna Lebedyeva,&nbsp;Agata Niemczyk,&nbsp;Jolanta Baranowska","doi":"10.1002/mame.202400332","DOIUrl":"https://doi.org/10.1002/mame.202400332","url":null,"abstract":"<p>Polytetrafluoroethylene (PTFE) films are deposited in parallel and perpendicular magnetic fields (MF) by electron-enhanced vacuum deposition (EVD) and EVD + low-temperature plasma (LTP) methods. The structure, morphology, and nanomechanical properties of the films are studied by infrared spectroscopy (IRS), atomic force microscopy (AFM), and spectroscopic ellipsometry. The structure of the thicker films is closer to that of bulk PTFE than that of thin films. The films' crystallinity and surface roughness are higher than those deposited without MF. The birefringence of the refractive index (n) of the films deposited in the MF is inverse to the anisotropy of the n of the films deposited without MF. The hardness of the films is close to that of bulk PTFE.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 3","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400332","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flame Retardancy via in-Mould Coating and Durability of Flame Retardants After Mechanical Recycling in all-polyamide Composites Prepared by In Situ Polymerisation
IF 4.2 3区 材料科学
Macromolecular Materials and Engineering Pub Date : 2024-12-08 DOI: 10.1002/mame.202400325
Zsófia Kovács, Andrea Toldy
{"title":"Flame Retardancy via in-Mould Coating and Durability of Flame Retardants After Mechanical Recycling in all-polyamide Composites Prepared by In Situ Polymerisation","authors":"Zsófia Kovács,&nbsp;Andrea Toldy","doi":"10.1002/mame.202400325","DOIUrl":"https://doi.org/10.1002/mame.202400325","url":null,"abstract":"<p>Sustainable development requires that the structural materials can be easily recycled. The advantage of all-polyamide composites (APCs) is that the matrix and the reinforcing material come from the same material family and can be easily mechanically recycled. In the research, polyamide 6.6 (PA6.6) reinforced polyamide 6 (PA6) composites by anionic ring-opening polymerisation are prepared and created a flame retardant coating on their surface by in-mould coating. The thermal stability of the created flame retarded APCs is investigated by thermogravimetric analysis (TGA), and the flammability is tested by UL-94 test, limiting oxygen index (LOI) and mass loss type cone calorimetry (MLC). The coatings reduced the peak heat release rate (pHRR) by up to 49% and increased the residual mass after combustion. The flame retarded APCs are mechanically recycled with the addition of 50 mass% primary material, and their thermal properties and flammability are investigated. The most effective formulations fully preserved their ability to reduce pHRR, demonstrating the durability of flame retardant properties through multiple life cycles. In the case of the sample containing 3% phosphorus from hexaphenoxycyclotriphosphazene (HPCTP) and 4% expandable graphite (EG), the pHRR after recycling is reduced by 35% compared to primary APC without flame retardants.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 3","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recycled PET Packaging Materials of Improved Toughness— Importance of Devitrification of the Rigid Amorphous Fraction
IF 4.2 3区 材料科学
Macromolecular Materials and Engineering Pub Date : 2024-12-04 DOI: 10.1002/mame.202400219
Ferenc Ronkay, Dániel Gere, Emese Slezák, Edina Szabó, György Marosi, Katalin Bocz
{"title":"Recycled PET Packaging Materials of Improved Toughness— Importance of Devitrification of the Rigid Amorphous Fraction","authors":"Ferenc Ronkay,&nbsp;Dániel Gere,&nbsp;Emese Slezák,&nbsp;Edina Szabó,&nbsp;György Marosi,&nbsp;Katalin Bocz","doi":"10.1002/mame.202400219","DOIUrl":"https://doi.org/10.1002/mame.202400219","url":null,"abstract":"<p>Degradation, a common problem faced during the processing of recycled poly(ethylene terephthalate) (PET), leads to significant embrittlement of the products, as a result of which the material loses its applicability. Increased crystallization rate of the short chains of recycled PET and obstructed mobility of the amorphous phase are the main causes of enhanced brittleness. In this research, a straightforward method is proposed for improving the toughness of recycled PET products, namely the devitrification of the rigid amorphous phase by thermal annealing, which results in enhanced molecular mobility in the amorphous fraction, thereby promoting ductile deformation. The effects of thermal annealing conditions are comprehensively evaluated on the microstructure and macroscopic properties, i.e., impact resistance, of recycled PET films. The perforation energy value of the recycled PET film is found to increase to its threefold, reaching a value higher than 18 J mm<sup>−1</sup>, as a result of 10 s thermal treatment at 120 °C. Differential scanning calorimetry, dynamic mechanical analyses, and thermally stimulated depolarization current measurements provide evidence for the devitrification of the rigid amorphous fraction under these conditions, which is the key to efficient enhancement in toughness.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting Response Surface Methodology to Engineer the Mechanical Properties of Alginate-based Hydrogels
IF 4.2 3区 材料科学
Macromolecular Materials and Engineering Pub Date : 2024-12-02 DOI: 10.1002/mame.202400296
Alessio Bucciarelli, Chen Zhao, Xue Bai, Rebekah Kay, Ayşe Latif, Kaye J. Williams, Annalisa Tirella
{"title":"Exploiting Response Surface Methodology to Engineer the Mechanical Properties of Alginate-based Hydrogels","authors":"Alessio Bucciarelli,&nbsp;Chen Zhao,&nbsp;Xue Bai,&nbsp;Rebekah Kay,&nbsp;Ayşe Latif,&nbsp;Kaye J. Williams,&nbsp;Annalisa Tirella","doi":"10.1002/mame.202400296","DOIUrl":"https://doi.org/10.1002/mame.202400296","url":null,"abstract":"<p>Engineering human tissue microenvironments that recapitulate the composition and biomechanics of extracellular matrix (ECM) in vitro is challenging. New mechanically tunable alginate-based hydrogels are presented, enabling to precise model multiple ECM features in the context of breast cancer. Combining alginate, oxidized alginate (OA), and gelatin with different crosslinking strategies a library of mechanically controlled hydrogels supporting human cell growth (MDA-MB-231) is obtained. The compressive moduli and stability of alginate-based hydrogels are characterized and modeled using a response surface methodology (RSM); this enables to selection of precision-hydrogels decoupling their biochemical composition with mechanical properties (1–30 kPa). Specific alginate-based hydrogels are selected as enhanced technologies to model breast-specific microenvironments in vitro to study the impact of biomechanical and biochemical properties on cell behavior. Doxorubicin is selected as a model drug and as first-line treatment for breast cancer to investigate the correlation between drug efficacy and breast tumor ECM stiffness. Results demonstrate that doxorubicin is less effective (EC<sub>50</sub> 0.495 µ<span>m</span> vs EC<sub>50</sub> 0.189 µ<span>m</span>) in cells cultured in softer hydrogels (6.9 kPa) than in stiffer (21.0 kPa). In the context of breast cancer, engineered hydrogels prove valuable technologies to model tissue-specific ECM in vitro for biological studies, advancing understanding of therapeutic response and resistance.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400296","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing Nature-Derived Sustainable Materials for Electrochemical Energy Storage: Unveiling the Mechanism and Applications
IF 4.2 3区 材料科学
Macromolecular Materials and Engineering Pub Date : 2024-11-30 DOI: 10.1002/mame.202400129
Naman Sharma, Kirti Mishra, Nirankar Singh, Samarjeet Singh Siwal, Phil Hart, Vijay Kumar Thakur
{"title":"Harnessing Nature-Derived Sustainable Materials for Electrochemical Energy Storage: Unveiling the Mechanism and Applications","authors":"Naman Sharma,&nbsp;Kirti Mishra,&nbsp;Nirankar Singh,&nbsp;Samarjeet Singh Siwal,&nbsp;Phil Hart,&nbsp;Vijay Kumar Thakur","doi":"10.1002/mame.202400129","DOIUrl":"https://doi.org/10.1002/mame.202400129","url":null,"abstract":"<p>Recently, research all over the world is being carried out to develop eco-friendly supercapacitors (SCs) using biopolymeric materials like proteins or polysaccharides. These polymers offer these innovative energy storage devices' sustainability and recyclability, flexibility, lightweight, and steady cycling performance—all crucial for utilizations involving wearable electronics and others. Given its abundance and extensive recycling behavior, cellulose is one of the most sustainable natural polymers requiring special attention. The paper discusses the various types of cellulose-based materials (CBMs), including nanocellulose, cellulose derivatives, and composites, as well as their synthesis methods and electrochemical properties. The review also highlights the performance of CBMs in SC applications, including their capacitance, cycling stability, and rate capability, along with recent advances in modifying the materials, such as surface modification and hybrid materials. Finally, the proposed topic is concluded with the current challenges and future prospects of CBMs for SC applications.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信