Poly(Butylene Adipate-Co-Terephthalate)/Silane-Treated Wollastonite-Based Blown Film for Sustainable Packaging Application: Studying the Impact of Uniaxial Stretching on the Final Properties

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matias Menossi, Manjusri Misra, Amar Kumar Mohanty
{"title":"Poly(Butylene Adipate-Co-Terephthalate)/Silane-Treated Wollastonite-Based Blown Film for Sustainable Packaging Application: Studying the Impact of Uniaxial Stretching on the Final Properties","authors":"Matias Menossi,&nbsp;Manjusri Misra,&nbsp;Amar Kumar Mohanty","doi":"10.1002/mame.202400434","DOIUrl":null,"url":null,"abstract":"<p>The demand for biodegradable packaging is rising due to plastic pollution corncerns. This study develops biodegradable composites based on poly (butylene adipate-co-terephthalate) (PBAT) and silane-treated wollastonite (S-W) at two concentrations (15 and 25 wt%) through a combination of melt extrusion and blow-film extrusion techniques. Next, the PBAT/S-W composite films underwent uniaxial stretching in the machine direction (MD) to study the effects on their morphology, mechanical and thermal properties, barrier performance, contact angle, and X-ray diffraction (XRD) at different stretch ratios (SR). The incorporation of S-W at 15 wt% increased the mechanical properties, achieving ≈500% for tensile strength and 1000% for Young's modulus for SR6. Thermal and XRD analyses demonstrated that uniaxial stretching significantly enhanced film crystallinity because of strain-induced crystallization. Morphological analysis indicated two opposing effects at high SR: a pronounced alignment of molecular chains in the MD and weak adhesion between the filler and polymer matrix, which can impact the material's structural integrity. The water vapor barrier properties of the PBAT/S-W25% blown film at SR6 exhibited a remarkable 42% improvement compared to the unstretched version. This advancement, resulting from the elevated crystallinity, establishes PBAT/S-W as a viable eco-friendly substitute for single-use plastics in the field of biodegradable packaging.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400434","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400434","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for biodegradable packaging is rising due to plastic pollution corncerns. This study develops biodegradable composites based on poly (butylene adipate-co-terephthalate) (PBAT) and silane-treated wollastonite (S-W) at two concentrations (15 and 25 wt%) through a combination of melt extrusion and blow-film extrusion techniques. Next, the PBAT/S-W composite films underwent uniaxial stretching in the machine direction (MD) to study the effects on their morphology, mechanical and thermal properties, barrier performance, contact angle, and X-ray diffraction (XRD) at different stretch ratios (SR). The incorporation of S-W at 15 wt% increased the mechanical properties, achieving ≈500% for tensile strength and 1000% for Young's modulus for SR6. Thermal and XRD analyses demonstrated that uniaxial stretching significantly enhanced film crystallinity because of strain-induced crystallization. Morphological analysis indicated two opposing effects at high SR: a pronounced alignment of molecular chains in the MD and weak adhesion between the filler and polymer matrix, which can impact the material's structural integrity. The water vapor barrier properties of the PBAT/S-W25% blown film at SR6 exhibited a remarkable 42% improvement compared to the unstretched version. This advancement, resulting from the elevated crystallinity, establishes PBAT/S-W as a viable eco-friendly substitute for single-use plastics in the field of biodegradable packaging.

Abstract Image

聚己二酸丁二酯/硅烷处理硅灰石基可持续包装吹膜:单轴拉伸对最终性能的影响研究
由于对塑料污染的担忧,对可生物降解包装的需求正在上升。本研究通过熔融挤压和吹膜挤压技术的结合,开发了基于聚己二酸丁二醇酯(PBAT)和硅烷处理的硅灰石(S-W)两种浓度(15%和25% wt%)的可生物降解复合材料。接下来,对PBAT/S-W复合薄膜进行机器方向(MD)单轴拉伸,研究不同拉伸比(SR)对其形貌、力学和热性能、势垒性能、接触角和x射线衍射(XRD)的影响。添加15 wt%的S-W提高了机械性能,SR6的抗拉强度达到≈500%,杨氏模量达到1000%。热分析和XRD分析表明,单轴拉伸明显提高了薄膜的结晶度。形态学分析表明,在高SR下,两种相反的效应:分子链在MD中的明显排列和填料与聚合物基体之间的弱粘附,这会影响材料的结构完整性。与未拉伸的PBAT/S-W25%吹膜相比,SR6下的PBAT/S-W25%吹膜的水蒸气阻隔性能提高了42%。由于结晶度的提高,这一进步确立了PBAT/S-W作为可生物降解包装领域一次性塑料的可行环保替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信