Cornelia Wolf-Brandstetter, Rafael Methling, Dirk Kuckling
{"title":"具有增强生物相容性的可吸附和抗菌两亲嵌段共聚物","authors":"Cornelia Wolf-Brandstetter, Rafael Methling, Dirk Kuckling","doi":"10.1002/mame.202500078","DOIUrl":null,"url":null,"abstract":"<p>To minimize or avoid the use of antibiotics, antimicrobial polymers have emerged as a promising option to fight biomaterial-associated infections, e.g., on titanium-based implants. However, the challenge is to develop active polymers that exhibit an antimicrobial effect and are compatible with human cells. Different studies aiming for biocidal polymers active in soluble mode, focused on the ratio of cationic to hydrophobic groups, while only marginal knowledge is available for immobilized components. Here a strong hydrophilic electrolyte 4-vinylbenzyltrimethylammonium chloride (TMA) is chosen as the cationic component. The block composition of the polycationic segment is modified with styrene (Sty) regarding the amphiphilic balance. To adsorb such polymers onto titanium surfaces they are equipped with a polyphosphonic acid anchor block by sequential reversible-addition-fragmentation chain-transfer polymerization (RAFT) polymerization. The polymer composition affected the wetting behavior of adsorbed coatings with water contact angles ranging from 17° to 72°, while zetapotential measurements confirmed high extent of positive charges for all adsorbed polymer coatings. The fundamentally modified block composition resulted in significantly improved cytocompatibility. Antimicrobial efficacy in early bacterial adhesion is still retained from slightly antiadhesive coatings to combined antiadhesive/biocidal activity depending on Sty/TMA ratio in random polymers while a block copolymer revealed lowest antimicrobial effect.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500078","citationCount":"0","resultStr":"{\"title\":\"Adsorbable and Antimicrobial Amphiphilic Block Copolymers with Enhanced Biocompatibility\",\"authors\":\"Cornelia Wolf-Brandstetter, Rafael Methling, Dirk Kuckling\",\"doi\":\"10.1002/mame.202500078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To minimize or avoid the use of antibiotics, antimicrobial polymers have emerged as a promising option to fight biomaterial-associated infections, e.g., on titanium-based implants. However, the challenge is to develop active polymers that exhibit an antimicrobial effect and are compatible with human cells. Different studies aiming for biocidal polymers active in soluble mode, focused on the ratio of cationic to hydrophobic groups, while only marginal knowledge is available for immobilized components. Here a strong hydrophilic electrolyte 4-vinylbenzyltrimethylammonium chloride (TMA) is chosen as the cationic component. The block composition of the polycationic segment is modified with styrene (Sty) regarding the amphiphilic balance. To adsorb such polymers onto titanium surfaces they are equipped with a polyphosphonic acid anchor block by sequential reversible-addition-fragmentation chain-transfer polymerization (RAFT) polymerization. The polymer composition affected the wetting behavior of adsorbed coatings with water contact angles ranging from 17° to 72°, while zetapotential measurements confirmed high extent of positive charges for all adsorbed polymer coatings. The fundamentally modified block composition resulted in significantly improved cytocompatibility. Antimicrobial efficacy in early bacterial adhesion is still retained from slightly antiadhesive coatings to combined antiadhesive/biocidal activity depending on Sty/TMA ratio in random polymers while a block copolymer revealed lowest antimicrobial effect.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"310 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500078\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500078\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500078","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Adsorbable and Antimicrobial Amphiphilic Block Copolymers with Enhanced Biocompatibility
To minimize or avoid the use of antibiotics, antimicrobial polymers have emerged as a promising option to fight biomaterial-associated infections, e.g., on titanium-based implants. However, the challenge is to develop active polymers that exhibit an antimicrobial effect and are compatible with human cells. Different studies aiming for biocidal polymers active in soluble mode, focused on the ratio of cationic to hydrophobic groups, while only marginal knowledge is available for immobilized components. Here a strong hydrophilic electrolyte 4-vinylbenzyltrimethylammonium chloride (TMA) is chosen as the cationic component. The block composition of the polycationic segment is modified with styrene (Sty) regarding the amphiphilic balance. To adsorb such polymers onto titanium surfaces they are equipped with a polyphosphonic acid anchor block by sequential reversible-addition-fragmentation chain-transfer polymerization (RAFT) polymerization. The polymer composition affected the wetting behavior of adsorbed coatings with water contact angles ranging from 17° to 72°, while zetapotential measurements confirmed high extent of positive charges for all adsorbed polymer coatings. The fundamentally modified block composition resulted in significantly improved cytocompatibility. Antimicrobial efficacy in early bacterial adhesion is still retained from slightly antiadhesive coatings to combined antiadhesive/biocidal activity depending on Sty/TMA ratio in random polymers while a block copolymer revealed lowest antimicrobial effect.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)