具有增强生物相容性的可吸附和抗菌两亲嵌段共聚物

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cornelia Wolf-Brandstetter, Rafael Methling, Dirk Kuckling
{"title":"具有增强生物相容性的可吸附和抗菌两亲嵌段共聚物","authors":"Cornelia Wolf-Brandstetter,&nbsp;Rafael Methling,&nbsp;Dirk Kuckling","doi":"10.1002/mame.202500078","DOIUrl":null,"url":null,"abstract":"<p>To minimize or avoid the use of antibiotics, antimicrobial polymers have emerged as a promising option to fight biomaterial-associated infections, e.g., on titanium-based implants. However, the challenge is to develop active polymers that exhibit an antimicrobial effect and are compatible with human cells. Different studies aiming for biocidal polymers active in soluble mode, focused on the ratio of cationic to hydrophobic groups, while only marginal knowledge is available for immobilized components. Here a strong hydrophilic electrolyte 4-vinylbenzyltrimethylammonium chloride (TMA) is chosen as the cationic component. The block composition of the polycationic segment is modified with styrene (Sty) regarding the amphiphilic balance. To adsorb such polymers onto titanium surfaces they are equipped with a polyphosphonic acid anchor block by sequential reversible-addition-fragmentation chain-transfer polymerization (RAFT) polymerization. The polymer composition affected the wetting behavior of adsorbed coatings with water contact angles ranging from 17° to 72°, while zetapotential measurements confirmed high extent of positive charges for all adsorbed polymer coatings. The fundamentally modified block composition resulted in significantly improved cytocompatibility. Antimicrobial efficacy in early bacterial adhesion is still retained from slightly antiadhesive coatings to combined antiadhesive/biocidal activity depending on Sty/TMA ratio in random polymers while a block copolymer revealed lowest antimicrobial effect.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500078","citationCount":"0","resultStr":"{\"title\":\"Adsorbable and Antimicrobial Amphiphilic Block Copolymers with Enhanced Biocompatibility\",\"authors\":\"Cornelia Wolf-Brandstetter,&nbsp;Rafael Methling,&nbsp;Dirk Kuckling\",\"doi\":\"10.1002/mame.202500078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To minimize or avoid the use of antibiotics, antimicrobial polymers have emerged as a promising option to fight biomaterial-associated infections, e.g., on titanium-based implants. However, the challenge is to develop active polymers that exhibit an antimicrobial effect and are compatible with human cells. Different studies aiming for biocidal polymers active in soluble mode, focused on the ratio of cationic to hydrophobic groups, while only marginal knowledge is available for immobilized components. Here a strong hydrophilic electrolyte 4-vinylbenzyltrimethylammonium chloride (TMA) is chosen as the cationic component. The block composition of the polycationic segment is modified with styrene (Sty) regarding the amphiphilic balance. To adsorb such polymers onto titanium surfaces they are equipped with a polyphosphonic acid anchor block by sequential reversible-addition-fragmentation chain-transfer polymerization (RAFT) polymerization. The polymer composition affected the wetting behavior of adsorbed coatings with water contact angles ranging from 17° to 72°, while zetapotential measurements confirmed high extent of positive charges for all adsorbed polymer coatings. The fundamentally modified block composition resulted in significantly improved cytocompatibility. Antimicrobial efficacy in early bacterial adhesion is still retained from slightly antiadhesive coatings to combined antiadhesive/biocidal activity depending on Sty/TMA ratio in random polymers while a block copolymer revealed lowest antimicrobial effect.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"310 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500078\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500078\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500078","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了尽量减少或避免抗生素的使用,抗菌聚合物已经成为对抗生物材料相关感染的一种有希望的选择,例如在钛基植入物上。然而,挑战在于开发出具有抗菌作用并与人体细胞兼容的活性聚合物。针对可溶模式下活性的杀菌剂聚合物的不同研究主要集中在阳离子与疏水基团的比例上,而对于固定化组分的研究只有边际知识。本文选用强亲水性电解质4-乙烯基苄基三甲基氯化铵(TMA)作为阳离子组分。根据两亲性平衡,用苯乙烯(Sty)修饰多阳离子段的嵌段组成。为了将这些聚合物吸附在钛表面上,通过顺序可逆加成-破碎-链转移聚合(RAFT)聚合,它们配备了多膦酸锚块。聚合物的组成影响了水接触角在17°~ 72°范围内的吸附膜的润湿行为,而齐电势测量证实了所有吸附膜的高正电荷。从根本上修改的块组成导致细胞相容性显著改善。早期细菌粘附的抗菌效果仍然保留,从轻微的抗粘附涂层到抗粘附/生物杀灭活性的组合,这取决于随机聚合物的Sty/TMA比例,而嵌段共聚物的抗菌效果最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adsorbable and Antimicrobial Amphiphilic Block Copolymers with Enhanced Biocompatibility

Adsorbable and Antimicrobial Amphiphilic Block Copolymers with Enhanced Biocompatibility

To minimize or avoid the use of antibiotics, antimicrobial polymers have emerged as a promising option to fight biomaterial-associated infections, e.g., on titanium-based implants. However, the challenge is to develop active polymers that exhibit an antimicrobial effect and are compatible with human cells. Different studies aiming for biocidal polymers active in soluble mode, focused on the ratio of cationic to hydrophobic groups, while only marginal knowledge is available for immobilized components. Here a strong hydrophilic electrolyte 4-vinylbenzyltrimethylammonium chloride (TMA) is chosen as the cationic component. The block composition of the polycationic segment is modified with styrene (Sty) regarding the amphiphilic balance. To adsorb such polymers onto titanium surfaces they are equipped with a polyphosphonic acid anchor block by sequential reversible-addition-fragmentation chain-transfer polymerization (RAFT) polymerization. The polymer composition affected the wetting behavior of adsorbed coatings with water contact angles ranging from 17° to 72°, while zetapotential measurements confirmed high extent of positive charges for all adsorbed polymer coatings. The fundamentally modified block composition resulted in significantly improved cytocompatibility. Antimicrobial efficacy in early bacterial adhesion is still retained from slightly antiadhesive coatings to combined antiadhesive/biocidal activity depending on Sty/TMA ratio in random polymers while a block copolymer revealed lowest antimicrobial effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信