{"title":"The Effect of Immobilization Methods of P9-4 Antimicrobial Peptide Onto Gelatin Methacrylate on Multidrug-Resistant Bacteria: A Comparative Study.","authors":"Günnur Pulat, Nisa Nilsu Çelebi, Eda Bilgiç","doi":"10.1002/mabi.202400324","DOIUrl":"https://doi.org/10.1002/mabi.202400324","url":null,"abstract":"<p><p>Wound dressings play a crucial role in wound management by providing a protective barrier and creating an optimal environment for healing. Photocrosslinkable hydrogels, such as gelatin methacrylate (GelMA), have gained attention for their unique properties but often lack antimicrobial activity. To enhance their effectiveness, researchers are exploring methods to incorporate antimicrobial agents into photocrosslinkable hydrogel dressings. Immobilization of antimicrobial peptides (AMPs) onto hydrogel matrices may be achieved through physical or chemical methods. Although, chemical immobilization, using techniques like EDC/NHS chemistry, has shown promise in enhancing antimicrobial properties of hydrogels, the capacity for immobilization may be limited by the structure of hydrogel. Physical methods, such as immersing, offer alternatives but may have different efficacy and biocompatibility. The study aims to chemically immobilize GelMA with P9-4 AMP by photoinduced conjugation and EDC/NHS chemistry and compare its antimicrobial efficacy with a physical immobilization method. Chemical immobilization by EDC/NHS chemistry significantly enhances the antimicrobial effect of GelMA hydrogels against multi-drug resistant Psuedomonas aeruginosa (MDR P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) while maintaining favorable biocompatibility. Study highlights the potential of AMP-functionalized GelMA as advanced wound dressings for reducing infections caused by antibiotic-resistant bacteria and offers a promising approach for future research in wound management.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pablo Alarcón-Guijo, Víctor Garcés, Ana González, José M Delgado-López, Ruh Ullah, Vipul Bansal, Jose M Dominguez-Vera
{"title":"Bacterial Cellulose as a UVB Filter to Protect the Skin Microbiota.","authors":"Pablo Alarcón-Guijo, Víctor Garcés, Ana González, José M Delgado-López, Ruh Ullah, Vipul Bansal, Jose M Dominguez-Vera","doi":"10.1002/mabi.202400269","DOIUrl":"https://doi.org/10.1002/mabi.202400269","url":null,"abstract":"<p><p>Certain aerobic bacteria produce bacterial cellulose (BC) to protect themselves from UV radiation. Inspired by this natural function, the UV-filtering capacity of wet BC film (BC) and dried BC (BC-Dried) is evaluated and it is concluded that both samples hardly filter UVA, but filter UVB to some extent, especially BC-Dried. Moreover, this filtering capacity does not diminish but significantly increases with time, with efficiencies in the 145-160 min time range equal to or greater than most UV filters of the market. This increase in efficiency is due to the fact that the BC structure is modified by prolonged exposure to UVB radiation. Specifically, UVB causes sintering of the cellulose fibers, making the structure denser and increasing its reflection and scattering of UVB radiation. Remarkably, this UVB filtering ability of BC allows it to protect key skin probiotics, Lactobacillus fermentum (L. fermentum) and Cutibacterium acnes (C. acnes), against UVB damage. While the protection of healthy skin microbiota is not currently a regulatory requirement for sunscreens with UV filters, it may become a key differentiator for future UV filters given the increasing evidence on the role of skin microbiota in health.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selay Tornaci, Merve Erginer, Umut Bulut, Beste Sener, Elifsu Persilioglu, İsmail Bergutay Kalaycilar, Emine Guler Celik, Hasret Yardibi, Pinar Siyah, Oguzhan Karakurt, Ali Cirpan, Baris Gokalsin, Ahmet Murat Senisik, Firat Baris Barlas
{"title":"Innovative Fluorescent Polymers in Niosomal Carriers: A Novel Approach to Enhancing Cancer Therapy and Imaging","authors":"Selay Tornaci, Merve Erginer, Umut Bulut, Beste Sener, Elifsu Persilioglu, İsmail Bergutay Kalaycilar, Emine Guler Celik, Hasret Yardibi, Pinar Siyah, Oguzhan Karakurt, Ali Cirpan, Baris Gokalsin, Ahmet Murat Senisik, Firat Baris Barlas","doi":"10.1002/mabi.202400343","DOIUrl":"10.1002/mabi.202400343","url":null,"abstract":"<p>Cancer is anticipated to become the pioneer reason of disease-related deaths worldwide in the next two decades, underscoring the urgent need for personalized and adaptive treatment strategies. These strategies are crucial due to the high variability in drug efficacy and the tendency of cancer cells to develop resistance. This study investigates the potential of theranostic nanotechnology using three innovative fluorescent polymers (FP-1, FP-2, and FP-3) encapsulated in niosomal carriers, combining therapy (chemotherapy and radiotherapy) with fluorescence imaging. These cargoes are assessed for their cytotoxic effects across three cancer cell lines (A549, MCF-7, and HOb), with further analysis to determine their capacity to augment the effects of radiotherapy using a Linear Accelerator (LINAC) at specific doses. Fluorescence microscopy is utilized to verify their uptake and localization in cancerous versus healthy cell lines. The results confirmed that these niosomal cargoes not only improved the antiproliferative effects of radiotherapy but also demonstrate the practical application of fluorescent polymers in in vitro imaging. This dual function underscores the importance of dose optimization to maximize therapeutic benefits while minimizing adverse effects, thereby enhancing the overall efficacy of cancer treatments.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mabi.202400343","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jean Le Pennec, Amaury Guibert, Raviteja Gurram, Antoine Delon, Romain R Vivès, Elisa Migliorini
{"title":"BMP2 Binds Non-Specifically to PEG-Passivated Biomaterials and Induces pSMAD 1/5/9 Signalling.","authors":"Jean Le Pennec, Amaury Guibert, Raviteja Gurram, Antoine Delon, Romain R Vivès, Elisa Migliorini","doi":"10.1002/mabi.202400169","DOIUrl":"https://doi.org/10.1002/mabi.202400169","url":null,"abstract":"<p><p>Biomaterials are widely employed across diverse biomedical applications and represent an attractive strategy to explore how extracellular matrix components influence cellular response. In this study, the previously developed streptavidin platforms is aimed to use to investigate the role of glycosaminoglycans (GAGs) in bone morphogenetic protein 2 (BMP2) signaling. However, it is observed that the interpretation of findings is skewed due to the GAG-unrelated, non-specific binding of BMP2 on components of biomaterials. Non-specific adsorption of proteins is a recurrent and challenging issue for biomaterial studies. Despite the initial incorporation of anti-fouling polyethylene glycol (PEG) chains within biomaterials, the residual non-specific BMP2 adsorption still triggered BMP2 signaling within the same range as conditions of interest. The various options are explored to prevent BMP2 non-specific adsorption and a successful blocking condition involving a combination of bovine serum albumin and trehalose are identified. Furthermore, the effect of this blocking step improved when using gold platforms instead of glass, particularly with Chinese hamster ovary (CHO) cells. With this specific example, it is suggested that non-specific adsorption of BMPs on biomaterials may be a general concern - often undetected by classical surface-sensitive techniques - that needs to be addressed to better interpret cellular responses.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phuong Le Thi, Quang Anh Tu, Dong Hwan Oh, Ki Dong Park
{"title":"Glucose Oxidase-Coated Calcium Peroxide Nanoparticles as an Innovative Catalyst for In Situ H<sub>2</sub>O<sub>2</sub>-Releasing Hydrogels.","authors":"Phuong Le Thi, Quang Anh Tu, Dong Hwan Oh, Ki Dong Park","doi":"10.1002/mabi.202400268","DOIUrl":"https://doi.org/10.1002/mabi.202400268","url":null,"abstract":"<p><p>In situ forming and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-releasing hydrogels have been considered as attractive matrices for various biomedical applications. Particularly, horseradish peroxidase (HRP)-catalyzed crosslinking reaction serves efficient method to create in situ forming hydrogels due to its advantageous features, such as mild reaction conditions, rapid gelation rate, tunable mechanical strength, and excellent biocompatibility. Herein, a novel HRP-crosslinked hydrogel system is reported that can produce H<sub>2</sub>O<sub>2</sub> in situ for long-term applications, using glucose oxidase-coated calcium peroxide nanoparticles (CaO<sub>2</sub>@GOx NPs). In this system, CaO<sub>2</sub> gradually produced H<sub>2</sub>O<sub>2</sub> to support the HRP-mediated hydrogelation, while GOx further catalyzed the oxidation of glucose for in situ H<sub>2</sub>O<sub>2</sub> generation. As the hydrogel is formed rapidly is expected and the H<sub>2</sub>O<sub>2</sub> release behavior is prolonged up to 10 days. Interestingly, hydrogels formed by HRP/CaO<sub>2</sub>@GOx-mediated crosslinking reaction provided a favorable 3D microenvironment to support the viability and proliferation of fibroblasts, compared to that of hydrogels formed by either HRP/H<sub>2</sub>O<sub>2</sub> or HRP/CaO<sub>2</sub>/GOx-mediated crosslinking reaction. Furthermore, HRP/CaO<sub>2</sub>@GOx-crosslinked hydrogel enhanced the angiogenic activities of endothelial cells, which is demonstrated by the in vitro tube formation test and in ovo chicken chorioallantoic membrane model. Therefore, HRP/CaO<sub>2</sub>@GOx-catalyzed hydrogels is suggested as potential in situ H<sub>2</sub>O<sub>2</sub>-releasing materials for a wide range of biomedical applications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Synergistic Potential of Hydrogel Microneedles and Nanomaterials: Breaking Barriers in Transdermal Therapy.","authors":"Atefeh Golshirazi, Mahsa Mohammadzadeh, Sheyda Labbaf","doi":"10.1002/mabi.202400228","DOIUrl":"https://doi.org/10.1002/mabi.202400228","url":null,"abstract":"<p><p>The stratum corneum, which acts as a strong barrier against external agents, presents a significant challenge to transdermal drug delivery. In this regard, microneedle (MN) patches, designed as modern systems for drug delivery via permeation through the skin with the ability to pass through the stratum corneum, are known to be convenient, painless, and effective. In fact, MN have shown significant breakthroughs in transdermal drug delivery, and among the various types, hydrogel MN (HMNs) have demonstrated desirable inherent properties. Despite advancements, issues such as limited loading capacity, uncontrolled drug release rates, and non-uniform therapeutic approaches persist. Conversely, nanomaterials (NMs) have shown significant promise in medical applications, however, their efficacy and applicability are constrained by challenges including poor stability, low bioavailability, limited payload capacity, and rapid clearance by the immune system. Incorporation of NMs within HMNs offers new prospects to address the challenges associated with HMNs and NMs. This combination can provide a promising field of research for improved and effective delivery of therapeutic agents and mitigate certain adverse effects, addressing current clinical concerns. The current review highlights the use of NMs in HMNs for various therapeutic and diagnostic applications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Substrates with Tunable Hydrophobicity for Optimal Cell Adhesion.","authors":"Yuriy Snyder, Mary Todd, Soumen Jana","doi":"10.1002/mabi.202400196","DOIUrl":"https://doi.org/10.1002/mabi.202400196","url":null,"abstract":"<p><p>Electrospinning is a technique used to create nano/micro-fibrous materials from various polymers for biomedical uses. Polymers like polycaprolactone (PCL) are commonly used, but their hydrophobic properties can limit their applications. To enhance hydrophilicity, nonionic surfactants such as sorbitane monooleate (Span80) and poloxamer (P188) can be added to the PCL electrospinning solution without altering its net charge density. These additions enable the successful production of PCL/P188 and PCL/Span80 fibrous substrates. In this study, P188 and Span80 are incorporated into the PCL solutions; they are successfully electrospun into PCL/P188 and PCL/Span80 substrates, respectively. PCL/P188 substrates show that until a specific P188 concentration, fiber and pore sizes are similar to PCL substrates. However, exceeding 0.30% P188 concentration enlarges fibers, impacting fiber uniformity at higher concentrations. Conversely, higher concentrations of Span80 result in thicker, less uniform fibers, indicating potential disruptions in the electrospinning process. Notably, both surfactants significantly improve substrate hydrophilicity, enhancing the adhesion and proliferation of fibroblasts, endothelial cells, and smooth muscle cells. P188, in particular, shows superior efficacy in promoting cell adhesion and growth at concentrations optimized for different cell types. Therefore, precise surfactant concentrations in the electrospinning solution can lead to the optimization of electrospun substrates for tissue engineering applications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdumutolib A Atakhanov, Nurbek Sh Ashurov, Makhliyo M Kuzieva, Burhon N Mamadiyorov, Doniyor J Ergashev, Sayyora Sh Rashidova, Vitaliy V Khutoryanskiy
{"title":"Novel Acryloylated and Methacryloylated Nanocellulose Derivatives with Improved Mucoadhesive Properties.","authors":"Abdumutolib A Atakhanov, Nurbek Sh Ashurov, Makhliyo M Kuzieva, Burhon N Mamadiyorov, Doniyor J Ergashev, Sayyora Sh Rashidova, Vitaliy V Khutoryanskiy","doi":"10.1002/mabi.202400183","DOIUrl":"https://doi.org/10.1002/mabi.202400183","url":null,"abstract":"<p><p>In this work, three nanocellulose derivatives are synthesized with the aim of preparing new mucoadhesive materials. Nanocellulose is reacted with glycidyl methacrylate in dimethylsulphoxide, and with acryloyl and methacryloyl chloride in dimethylacetamide in the presence of 4-(N,N-dimethylamino)pyridine as a catalyst. These reactions are carried out under heterogeneous conditions, and the reaction products are characterized using various spectroscopic techniques, X-ray diffraction, atomic force microscopy, and thermogravimetric analysis. The Fourier-transform infrared spectra showed all the characteristic absorption bands typical for cellulose and also new peaks at 1720 cm<sup>-1</sup> for the carbonyl group (C═O) and 1639, 812 cm<sup>-1</sup> for the double bond (C═C). It is established that the crystal structure of the nanocellulose is slightly changed with derivatisation and the thermal stability of these derivatives increased. Mucoadhesive properties of nanocellulose and its derivatives is evaluated using the tensile test, rotating basket method, and fluorescence flow-through method. The retention of these polymers is evaluated on sheep oral mucosal tissue ex vivo using artificial saliva. Test results demonstrated that the new derivatives of nanocellulose have improved mucoadhesive properties compared to the parent nanocellulose.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioactive Hydrogels Inspired by Laminin: An Emerging Biomaterial for Tissue Engineering Applications.","authors":"Sweta Mohanty, Sangita Roy","doi":"10.1002/mabi.202400207","DOIUrl":"https://doi.org/10.1002/mabi.202400207","url":null,"abstract":"<p><p>Tissue or organ damage due to severe injuries or chronic diseases can adversely affect the quality of life. Current treatments rely on organ or tissue transplantation which has limitations including unavailability of donors, ethical issues, or immune rejection after transplantations. These limitations can be addressed by tissue regeneration which involves the development of bioactive scaffolds closely mimicking the extracellular matrix (ECM). One of the major components of ECM is the laminin protein which supports several tissues associated with important organs. In this direction, peptide-based hydrogels can effectively mimic the essential characteristics of laminin. While several reports have discussed the structure of laminin, the potential of laminin-derived peptide hydrogels as effective biomaterial for tissue engineering applications is yet to be discussed. In this context, the current review focuses on the structure of laminin and its role as an essential ECM protein. Further, the potential of short peptide hydrogels in mimicking the crucial properties of laminin is proposed. The review further highlights the significance of bioactive hydrogels inspired by laminin - in addressing numerous tissue engineering applications including angiogenesis, neural, skeletal muscle, liver, and adipose tissue regeneration along with a brief outlook on the future applications of these laminin-based hydrogels.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martina Cozzani, Pier Francesco Ferrari, Giacomo Damonte, Alessandro Pellis, Orietta Monticelli
{"title":"On the Development of Polylactic Acid/Polycaprolactone Blended Films with High Retention Capacity.","authors":"Martina Cozzani, Pier Francesco Ferrari, Giacomo Damonte, Alessandro Pellis, Orietta Monticelli","doi":"10.1002/mabi.202400272","DOIUrl":"https://doi.org/10.1002/mabi.202400272","url":null,"abstract":"<p><p>The retention capacity of polymers is related to the development of systems that combine high surface-to-volume ratio with good handling and specific functionality. Biodegradability and biocompatibility are also key features for extending the field of applications to areas such as biomedicine. With this in mind, the aim of this work is to develop biodegradable, biocompatible, and highly functionalized porous films, that ensure suitable handling and a good surface-to-volume ratio. Polylactic acid (PLA) is applied as a polymer matrix to which a polycaprolactone with a star-shaped architecture (PCL-COOH) to ensure a high concentration of carboxylic end functionalities is added. The porous films are prepared using the phase inversion technique, which, as shown by Scanning Electron Microscopy (SEM) analysis, promotes good dispersion of the PCL-COOH domains. Absorption and release measurements performed with a positively charged model molecule show that the retention capacity and release rate can be tuned by changing the PCL-COOH concentration in the systems. Moreover, the adsorption properties for the formulation with the highest PCL-COOH content are also demonstrated with a real and widely used drug, namely doxorubicin. Finally, the bio- and hemocompatibility of the films, which are enzymatically degradable, are evaluated by using human keratinocytes and red blood cells, respectively.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}