血管化肿瘤芯片模型作为研究肿瘤-微环境-药物相互作用的平台。

IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hyelim Kim, Seung-Woo Cho, Hong Nam Kim
{"title":"血管化肿瘤芯片模型作为研究肿瘤-微环境-药物相互作用的平台。","authors":"Hyelim Kim, Seung-Woo Cho, Hong Nam Kim","doi":"10.1002/mabi.202500240","DOIUrl":null,"url":null,"abstract":"<p><p>As cancer-targeting technologies advance, robust platforms for evaluating drug delivery systems (DDS) under pathomimetic conditions are critically needed. Traditional models inadequately mimic human tumor microenvironment (TME) complexity due to interspecies variance, structural simplification, and static perfusion. Vascularized tumor-on-a-chip systems address these gaps by integrating perfusable vasculature with tumor-stroma dynamics in microfluidic environments, enabling dynamic 3D evaluation of drug transport kinetics and therapeutic efficacy. These advances significantly enhance preclinical-to-clinical translatability, though challenges remain in achieving long-term vascular stability and multi-tissue integration under physiological flow conditions. Herein, we summarize recent progress in vascularized tumor-on-a-chip technologies for assessing DDS performance and TME interactions. Finally, opportunities for precision oncology and integrative organ-level modeling are highlighted, underscoring the transformative potential of these platforms in next-generation cancer research.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e00240"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vascularized Tumor-on-a-Chip Model as a Platform for Studying Tumor-Microenvironment-Drug Interaction.\",\"authors\":\"Hyelim Kim, Seung-Woo Cho, Hong Nam Kim\",\"doi\":\"10.1002/mabi.202500240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As cancer-targeting technologies advance, robust platforms for evaluating drug delivery systems (DDS) under pathomimetic conditions are critically needed. Traditional models inadequately mimic human tumor microenvironment (TME) complexity due to interspecies variance, structural simplification, and static perfusion. Vascularized tumor-on-a-chip systems address these gaps by integrating perfusable vasculature with tumor-stroma dynamics in microfluidic environments, enabling dynamic 3D evaluation of drug transport kinetics and therapeutic efficacy. These advances significantly enhance preclinical-to-clinical translatability, though challenges remain in achieving long-term vascular stability and multi-tissue integration under physiological flow conditions. Herein, we summarize recent progress in vascularized tumor-on-a-chip technologies for assessing DDS performance and TME interactions. Finally, opportunities for precision oncology and integrative organ-level modeling are highlighted, underscoring the transformative potential of these platforms in next-generation cancer research.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\" \",\"pages\":\"e00240\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202500240\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202500240","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着癌症靶向技术的进步,迫切需要在模拟病理条件下评估药物输送系统(DDS)的强大平台。由于种间差异、结构简化和静态灌注,传统模型不能充分模拟人类肿瘤微环境的复杂性。血管化肿瘤芯片系统通过在微流体环境中整合可灌注血管系统和肿瘤基质动力学来解决这些空白,从而实现药物运输动力学和治疗效果的动态3D评估。这些进展显著提高了临床前到临床的可翻译性,尽管在生理流动条件下实现长期血管稳定性和多组织整合方面仍存在挑战。在此,我们总结了用于评估DDS性能和TME相互作用的血管化肿瘤芯片技术的最新进展。最后,强调了精确肿瘤学和综合器官水平建模的机会,强调了这些平台在下一代癌症研究中的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vascularized Tumor-on-a-Chip Model as a Platform for Studying Tumor-Microenvironment-Drug Interaction.

As cancer-targeting technologies advance, robust platforms for evaluating drug delivery systems (DDS) under pathomimetic conditions are critically needed. Traditional models inadequately mimic human tumor microenvironment (TME) complexity due to interspecies variance, structural simplification, and static perfusion. Vascularized tumor-on-a-chip systems address these gaps by integrating perfusable vasculature with tumor-stroma dynamics in microfluidic environments, enabling dynamic 3D evaluation of drug transport kinetics and therapeutic efficacy. These advances significantly enhance preclinical-to-clinical translatability, though challenges remain in achieving long-term vascular stability and multi-tissue integration under physiological flow conditions. Herein, we summarize recent progress in vascularized tumor-on-a-chip technologies for assessing DDS performance and TME interactions. Finally, opportunities for precision oncology and integrative organ-level modeling are highlighted, underscoring the transformative potential of these platforms in next-generation cancer research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信