LandslidesPub Date : 2024-05-27DOI: 10.1007/s10346-024-02277-x
Li Qingmiao, Zhao Jianjun, Zuo Jing, Ji Feng, Deng Jie, Liu Shuowei, Lai Qiyi
{"title":"Investigation of the slope-type debris flow disaster chain triggered by a landslide-induced road blockage in Yingpan Township, Shuicheng, Guizhou, on July 27, 2023","authors":"Li Qingmiao, Zhao Jianjun, Zuo Jing, Ji Feng, Deng Jie, Liu Shuowei, Lai Qiyi","doi":"10.1007/s10346-024-02277-x","DOIUrl":"https://doi.org/10.1007/s10346-024-02277-x","url":null,"abstract":"<p>On July 27, 2023, at approximately 04:00, a debris flow, with an estimated volume of 25,000 m<sup>3</sup>, struck Lanhua Village in the southern part of Shuicheng District, Guizhou Province, China. This event led to the burial and damage of 15 houses in Lanhua Village. Remarkably, residents successfully observed this debris flow 30 min before its peak arrival, enabling sufficient time for evacuation prior to the onset of this fatal geological disaster. To elucidate the evolutionary process of the Lanhua Village debris flow, a detailed field survey was conducted utilizing unmanned aerial vehicle (UAV) technology. The findings suggest that extreme heavy rainfall served as the primary trigger for the debris flow. Landslides, comprising residual slope deposits at the top of the slope and induced by rainfall, resulted in the obstruction of Highway X244 and the blockage of culverts beneath the road. These blockages contributed to the formation of a peak cross-basin flood, exceeding 7 m<sup>3</sup>/s, which acted as the driving force initiating the debris flow. The thick layer of colluvial deposits covering the slope surface, with approximately 23,000 m<sup>3</sup> of material mobilized by flood erosion, constituted the primary source contributing to the rapid expansion and movement of the debris flow. The topography, characterized by steep upper slopes and gentler lower slopes, was a contributing factor to the debris flow deposits spreading into residential areas, resulting in disaster. The event in Lanhua Village exemplifies a “landslide-blockage-flood diversion-erosion-debris flow” disaster chain.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"34 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LandslidesPub Date : 2024-05-13DOI: 10.1007/s10346-024-02270-4
Safiyeh Tayebi, Md. Akib Jabed, Ana Lorena Ruano, Gwenyth O Lee, Paula F. da Silva, Saleh Ahmed, Edier V. Aristizábal G., Ranjan Kumar Dahal, Arezoo Soltani, Mohammad Imran Khan, Md. Atiqur Rahman, M Ashraful Islam, Ubydul Haque
{"title":"Stakeholder perspectives on landslide triggers and impacts in five countries","authors":"Safiyeh Tayebi, Md. Akib Jabed, Ana Lorena Ruano, Gwenyth O Lee, Paula F. da Silva, Saleh Ahmed, Edier V. Aristizábal G., Ranjan Kumar Dahal, Arezoo Soltani, Mohammad Imran Khan, Md. Atiqur Rahman, M Ashraful Islam, Ubydul Haque","doi":"10.1007/s10346-024-02270-4","DOIUrl":"https://doi.org/10.1007/s10346-024-02270-4","url":null,"abstract":"<p>Expert perspectives drive landslide mitigation and post-disaster policy planning. This study examines landslide risk perceptions among the stakeholders (government officials, academics, policy experts, local community representatives, and representatives of NGOs/civil society) across Brazil, Colombia, Nepal, Iran, and Pakistan, identifying both shared concerns and local heterogeneity. Key informants revealed a discrepancy in their degree of concern about landslides, with government officials exhibiting greater apprehension compared to local community representatives. Local community representatives incorrectly perceived landslides to be the result of natural phenomena. In contrast, governmental and academic stakeholders felt that human-induced triggers, specifically those related to land use and land cover change, were significant contributors to landslide occurrences, necessitating stringent law enforcement. The comprehensive impacts of landslides included economic losses, infrastructure disruption, agricultural losses, and food security concerns, underscoring the multifaceted nature of this hazard. Our results suggest the need for proactive citizen engagement in landslide monitoring, recognizing the importance of local contexts. We end by proposing a dual-pronged policy approach that emphasizes the socio-economic context of each region.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"26 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LandslidesPub Date : 2024-05-11DOI: 10.1007/s10346-024-02272-2
Nini Johana Marín-Rodríguez, Johnny Vega, Oscar Betancurt Zanabria, Juan David González-Ruiz, Sergio Botero
{"title":"Towards an understanding of landslide risk assessment and its economic losses: a scientometric analysis","authors":"Nini Johana Marín-Rodríguez, Johnny Vega, Oscar Betancurt Zanabria, Juan David González-Ruiz, Sergio Botero","doi":"10.1007/s10346-024-02272-2","DOIUrl":"https://doi.org/10.1007/s10346-024-02272-2","url":null,"abstract":"<p>This scientometric analysis significantly advances the understanding of landslide risk assessment and economic losses, focusing on scientometric insights. This study aims at analyzing the global trends and structures of landslide risk and economic loss research from 2002 to 2023 using scientometric techniques such as co-authorship, co-word, co-citation, cluster analysis, and trend topics, among others. Thus, analysis of 92 studies gathered from Scopus and Web of Science databases reveals a continuous growth in environmental, social, and quantitative research topics. Predominant contributions hail mainly from China and Italy. The research identifies critical themes, including risk analysis, vulnerability, fragility, and economic losses. The current identified research combines advanced statistical methods, including logistic regression, with climate change scenarios and susceptibility assessments to reveal intricate connections between climatic shifts, hydrogeological hazards, and their economic and environmental impacts. This study provides researchers and practitioners with a comprehensive understanding of the status quo and research trends of ontology research landslide risk and its economic losses. It also promotes further studies in this domain.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"133 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LandslidesPub Date : 2024-05-02DOI: 10.1007/s10346-024-02266-0
Luke Weidner, Gabriel Walton, Cameron Phillips
{"title":"Investigating the influences of precipitation, snowmelt, and freeze-thaw on rockfall in Glenwood Canyon, Colorado using terrestrial laser scanning","authors":"Luke Weidner, Gabriel Walton, Cameron Phillips","doi":"10.1007/s10346-024-02266-0","DOIUrl":"https://doi.org/10.1007/s10346-024-02266-0","url":null,"abstract":"<p>Understanding the triggering factors leading to rockfall is essential in managing their risk to transportation infrastructure. Precipitation and freeze-thaw (FT) are widely studied rockfall triggers, but developing reliable, quantitative methods to forecast rockfall in response to weather events remains challenging. Terrestrial laser scanning (TLS) is a powerful tool for high-accuracy modeling of rock slopes, but the frequency of scanning is often too low to correlate rockfall behavior with weather events or seasonal trends. We conducted a TLS campaign between 2017 and 2022 in Glenwood Canyon, Colorado, to investigate the seasonal variability in rockfall triggering and conditioning mechanisms. A total of 44 scans were collected over 5 years and were processed to allow for consistent detection of rockfalls larger than 0.0036 m<sup>3</sup> in volume. Meteorological variables relating to precipitation, snowpack, and temperature were modeled using the National Weather Service SNODAS product and were used to complete an exploratory analysis of the correlation of various weather indices with rockfall rate over time. It was found that the short-term sum of liquid precipitation and snowmelt (averaged over the scanning interval or the max single-day total) was a strong predictor of rockfall volume rate between 2018 and 2020, especially in the spring and summer months; a linear model of max daily liquid was able to explain 65% of the variance (<i>R</i><sup>2</sup><sub>adj</sub>) in rockfall volume rate in March through August. This implicates springtime snowmelt and rain-on-snow events as strong predictors of rockfall at the study site. We interpret these observations to indicate that snowmelt and rainfall are acting to trigger blocks that have been conditioned (destabilized) over the preceding winter.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"10 5 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140838986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LandslidesPub Date : 2024-05-02DOI: 10.1007/s10346-024-02259-z
Olga Mavrouli, M. Amparo Núñez-Andrés, Felipe Buill, Nieves Lantada, Jordi Corominas
{"title":"Correlation between rockfall frequency and overhang geometrical attributes","authors":"Olga Mavrouli, M. Amparo Núñez-Andrés, Felipe Buill, Nieves Lantada, Jordi Corominas","doi":"10.1007/s10346-024-02259-z","DOIUrl":"https://doi.org/10.1007/s10346-024-02259-z","url":null,"abstract":"<p>The estimation of rockfall frequency for the quantitative assessment of rockfall hazard is challenging when there are not records of previous events. The aim of this study is to investigate the correlation between the rockfall frequency and the geometry of the overhanging rock blocks, at rocky slopes. The investigation takes place for seven rocky slopes along a coastal road in Northern Spain, and it is based on 15 years of rockfall data. A field survey of these slopes took place between May and June 2022, using a terrestrial laser scanner as well as ground and aerial photogrammetry from UAVs, in order to build three-dimensional digital models. Then, the geometrical attributes of the existing overhanging rocks were measured on the models. The surface area and the width of the latter were calculated. The correlation between the rockfall frequency and the sum of the overhanging areas at each slope was assessed. A good linear correlation was indicated between the normalized per slope area number of rockfalls and total overhang area (<i>R</i><sup>2</sup> = 0.9013) and between the respective normalized per unit of road length parameters (<i>R</i><sup>2</sup> = 0.9594). The magnitude-frequency relationship for the rockfall events that occurred at the seven slopes follows a power law distribution with exponent −0.65.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"16 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140839126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LandslidesPub Date : 2024-04-30DOI: 10.1007/s10346-024-02253-5
Dongri Song, Xiaoqing Chen
{"title":"A new framework to characterize and unify the impact load exerted by flow-type mass movements","authors":"Dongri Song, Xiaoqing Chen","doi":"10.1007/s10346-024-02253-5","DOIUrl":"https://doi.org/10.1007/s10346-024-02253-5","url":null,"abstract":"<p>A wide range of flow-type mass movements occur in nature. Depending on the solid fraction of these flows, they can be characterized as stream flows (flash floods), hyper-concentrated flows (debris floods), debris flows, and dry debris avalanches. A key scientific challenge in mitigating these hazards is estimating the impact force that they exert on protection structures. In this study, a new framework (<i>N</i><sub>fric</sub> - <i>Fr</i><sup>2</sup> - <span>(alpha)</span> relationship) is proposed to characterize and unify the impact behavior for a wide spectrum of flow-type mass movements. The friction number <i>N</i><sub>fric</sub> characterizes the ratio of grain-contact to fluid-viscous stresses for the wide range of flow types. Solid–fluid interaction regulates the pore fluid pressure, thereby governing the rheology of the flows and the degree of static loading exerted on a barrier. The Froude number <i>Fr</i><sup>2</sup> (in squared form) macroscopically characterizes the flow inertia relative to the earth’s gravitational field. Finally, the dynamic pressure coefficient <span>(alpha)</span> is used to quantify the impact force in a dimensionless manner. As compared to existing guidelines, which recommend a wide range of <span>(alpha)</span> without considering the flow composition, the newly proposed framework in this study estimates the dynamic impact force by considering the effects of solid–fluid interaction. Findings from this study could further enhance the design of flow-type mass movement mitigation structures.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"105 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140839091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new DTM-based three-dimensional MPM model for simulating rapid flow-like landslides propagating on curved bed","authors":"Wei Shen, Zhitian Qiao, Tonglu Li, Ping Li, Jiheng Li, Jianbing Peng","doi":"10.1007/s10346-024-02261-5","DOIUrl":"https://doi.org/10.1007/s10346-024-02261-5","url":null,"abstract":"<p>Rapid flow-like landslides frequently occur in mountainous regions. To mitigate the disasters caused by these landslides, it is crucial to develop robust numerical models that can accurately predict their run-out processes. Models based on the material point method (MPM) offer significant advantages in simulating large deformation issues in geomaterials, including landslides. However, applying these models to accurately simulate real-world rapid flow-like landslides remains a challenge, primarily due to the complexities involved in handling the three-dimensional (3D) sliding bed boundary. This paper introduces a novel 3D MPM model specifically designed for simulating rapid flow-like landslides that propagate across curved beds. The constraints of the sliding bed on the landslide are imposed by the boundary nodes close to the bed. These boundary nodes carry information about the normal vector of the sliding bed, derived directly from the digital terrain model (DTM). Furthermore, the model integrates a hybrid formulation that combines the Full Lagrangian Implicit Particle (FLIP) method with the Particle In Cell (PIC) method, facilitating a stable solution for the velocity and position of material points. The effectiveness of the proposed model is confirmed through a numerical analysis of a rigid block sliding down an inclined plane and an experiment of sand flow on a curved bed. The simulation results from these two benchmark scenarios align closely with both analytical and experimental data, attesting to the validity of the model. The model is then applied to analyze a rapid flow-like landslide that occurred in Gansu Province, China, characterized by a curved sliding bed. The outcomes illustrate the model’s capability to efficiently capture the landslide’s climbing and turning motions induced by the meandering topography. Moreover, it successfully reproduces the main deposition characteristics observed in the field, demonstrating the model’s strong suitability for simulating the propagation of rapid flow-like landslides on naturally curved beds.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"39 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LandslidesPub Date : 2024-04-26DOI: 10.1007/s10346-024-02263-3
Dongxiao Zhang, Lu Zhang, Jie Dong, Yian Wang, Chengsheng Yang, Mingsheng Liao
{"title":"Improved phase gradient stacking for landslide detection","authors":"Dongxiao Zhang, Lu Zhang, Jie Dong, Yian Wang, Chengsheng Yang, Mingsheng Liao","doi":"10.1007/s10346-024-02263-3","DOIUrl":"https://doi.org/10.1007/s10346-024-02263-3","url":null,"abstract":"<p>The advanced interferometric synthetic aperture radar (InSAR) provides an effective tool to detect landslides over a large area. However, it is greatly affected by atmospheric delays and phase unwrapping errors in a complex environment and requires massive calculations and analysis. These factors hinder InSAR from reliably and rapidly identifying landslides. In this study, we propose an improved phase gradient stacking (IPGS) method, which effectively suppresses atmospheric delay disturbance, topographic residuals, and noise while enhancing local deformation signals. The temporally stacked phase gradients with a preset step along four directions are merged to form a phase gradient map. It avoids complicated unwrapping and massive time series analysis. The simulation experiment demonstrates the improvement to traditional methods by combining four directions and a specific step. The IPGS method achieves a comparative landslide detection as the classical SBAS method in terms of Sentinel-1 datasets covering Danba County. Even for some small-scale landslides that are difficult for SBAS to detect, the phase gradients are distinct. A field investigation validates the reliability of IPGS-detected landslides. It provides an effective tool for large-scale, rapid, and reliable detection of geological disasters.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"27 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LandslidesPub Date : 2024-04-26DOI: 10.1007/s10346-024-02264-2
Alexander Strom
{"title":"Prediction of the dimensions of rock avalanches’ affected areas based on the empirical relationships derived from the Central Asian database","authors":"Alexander Strom","doi":"10.1007/s10346-024-02264-2","DOIUrl":"https://doi.org/10.1007/s10346-024-02264-2","url":null,"abstract":"<p>Mobility of long-runout catastrophic landslides (debris flows, debris and rock avalanches) can be characterized by several parameters. Those, allowing predicting exposure of elements at risk that might be threatened by such hazardous natural phenomena if they will occur—the affected area and runout, are most important for risk assessment. They can be estimated using two general approaches—one based on the numerical modeling and another one based on the empirical relationships between runout and affected area on the one hand and parameters characterizing the potential source zone on the other hand. The latter are volume of the anticipated rock slope failure and height of the unstable slope. Both can be assessed prior to failure with certain accuracy by contrast with the height drop defined as the elevation difference between headscarp crown and the deposit tip. The optimal input parameter is the product of the unstable slope height and possible failure volume that is, in general, proportional to the potential energy of the unstable rock massif. According to the analysis of the Central Asian rockslides/rock avalanches database that includes quantitative parameters of 515 case studies with defined confinement, the relationships of such product with runout and affected area have high correlation coefficients regardless of the confinement conditions and, therefore, allow prediction of the parameters in question with sufficient reliability. It is pointed out that requirements to the accuracy of slope height and failure volume assessment depend on a large extent on the variability range of these parameters within the inventories used to derive the empirical relationships.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"22 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A quantitative optimization method for rockfall passive nets on high-steep slopes: case study of the Feishuiyan slope","authors":"Yu-chen Li, Nan Jiang, Jun-lin Chen, Shi-quan Chen, Yu-chuan Yang, Jia-wen Zhou","doi":"10.1007/s10346-024-02265-1","DOIUrl":"https://doi.org/10.1007/s10346-024-02265-1","url":null,"abstract":"<p>Rockfall poses a formidable threat to the ongoing fast-paced construction of large-scale projects in uninhabited areas in high mountain valleys. In this study, an optimization method for arranging passive nets on high and steep slopes was presented to mitigate the threat from rockfalls. This method diverges from the conventional method of subjectively arranging passive nets along the perimeter of protected regions (due to its emphasis on cost considerations), in which the quantitative appraisal of rockfall movement characteristics and interception rates is frequently omitted, consequently failing to comprehensively ensure transportation routes and temporary construction sites. The methodology encompasses the acquisition of terrain data by unmanned aerial vehicles (UAVs), identification of rockfall sources based on UAV point clouds, quantitative assessment of rockfall hazards using a 3D probabilistic model, and optimization of the layout of passive nets based on the assessment results. The aim of the optimization of passive nets is to quantitatively assess the cost–effect relationship of passive nets, accounting for construction feasibility, interception potential, and likelihood of successful rockfall interception. We applied this method to the Feishuiyan slope in southwest China as an example, and the results demonstrated an enhanced interception rate of 99% and cost reduction by a factor of three relative to the original scheme. This innovative approach could enhance rockfall mitigation in high and steep areas, providing a viable strategy for future prevention efforts in these areas.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"30 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}