{"title":"高陡边坡落石被动网的定量优化方法:飞水岩边坡案例研究","authors":"Yu-chen Li, Nan Jiang, Jun-lin Chen, Shi-quan Chen, Yu-chuan Yang, Jia-wen Zhou","doi":"10.1007/s10346-024-02265-1","DOIUrl":null,"url":null,"abstract":"<p>Rockfall poses a formidable threat to the ongoing fast-paced construction of large-scale projects in uninhabited areas in high mountain valleys. In this study, an optimization method for arranging passive nets on high and steep slopes was presented to mitigate the threat from rockfalls. This method diverges from the conventional method of subjectively arranging passive nets along the perimeter of protected regions (due to its emphasis on cost considerations), in which the quantitative appraisal of rockfall movement characteristics and interception rates is frequently omitted, consequently failing to comprehensively ensure transportation routes and temporary construction sites. The methodology encompasses the acquisition of terrain data by unmanned aerial vehicles (UAVs), identification of rockfall sources based on UAV point clouds, quantitative assessment of rockfall hazards using a 3D probabilistic model, and optimization of the layout of passive nets based on the assessment results. The aim of the optimization of passive nets is to quantitatively assess the cost–effect relationship of passive nets, accounting for construction feasibility, interception potential, and likelihood of successful rockfall interception. We applied this method to the Feishuiyan slope in southwest China as an example, and the results demonstrated an enhanced interception rate of 99% and cost reduction by a factor of three relative to the original scheme. This innovative approach could enhance rockfall mitigation in high and steep areas, providing a viable strategy for future prevention efforts in these areas.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"30 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantitative optimization method for rockfall passive nets on high-steep slopes: case study of the Feishuiyan slope\",\"authors\":\"Yu-chen Li, Nan Jiang, Jun-lin Chen, Shi-quan Chen, Yu-chuan Yang, Jia-wen Zhou\",\"doi\":\"10.1007/s10346-024-02265-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rockfall poses a formidable threat to the ongoing fast-paced construction of large-scale projects in uninhabited areas in high mountain valleys. In this study, an optimization method for arranging passive nets on high and steep slopes was presented to mitigate the threat from rockfalls. This method diverges from the conventional method of subjectively arranging passive nets along the perimeter of protected regions (due to its emphasis on cost considerations), in which the quantitative appraisal of rockfall movement characteristics and interception rates is frequently omitted, consequently failing to comprehensively ensure transportation routes and temporary construction sites. The methodology encompasses the acquisition of terrain data by unmanned aerial vehicles (UAVs), identification of rockfall sources based on UAV point clouds, quantitative assessment of rockfall hazards using a 3D probabilistic model, and optimization of the layout of passive nets based on the assessment results. The aim of the optimization of passive nets is to quantitatively assess the cost–effect relationship of passive nets, accounting for construction feasibility, interception potential, and likelihood of successful rockfall interception. We applied this method to the Feishuiyan slope in southwest China as an example, and the results demonstrated an enhanced interception rate of 99% and cost reduction by a factor of three relative to the original scheme. This innovative approach could enhance rockfall mitigation in high and steep areas, providing a viable strategy for future prevention efforts in these areas.</p>\",\"PeriodicalId\":17938,\"journal\":{\"name\":\"Landslides\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landslides\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10346-024-02265-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02265-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A quantitative optimization method for rockfall passive nets on high-steep slopes: case study of the Feishuiyan slope
Rockfall poses a formidable threat to the ongoing fast-paced construction of large-scale projects in uninhabited areas in high mountain valleys. In this study, an optimization method for arranging passive nets on high and steep slopes was presented to mitigate the threat from rockfalls. This method diverges from the conventional method of subjectively arranging passive nets along the perimeter of protected regions (due to its emphasis on cost considerations), in which the quantitative appraisal of rockfall movement characteristics and interception rates is frequently omitted, consequently failing to comprehensively ensure transportation routes and temporary construction sites. The methodology encompasses the acquisition of terrain data by unmanned aerial vehicles (UAVs), identification of rockfall sources based on UAV point clouds, quantitative assessment of rockfall hazards using a 3D probabilistic model, and optimization of the layout of passive nets based on the assessment results. The aim of the optimization of passive nets is to quantitatively assess the cost–effect relationship of passive nets, accounting for construction feasibility, interception potential, and likelihood of successful rockfall interception. We applied this method to the Feishuiyan slope in southwest China as an example, and the results demonstrated an enhanced interception rate of 99% and cost reduction by a factor of three relative to the original scheme. This innovative approach could enhance rockfall mitigation in high and steep areas, providing a viable strategy for future prevention efforts in these areas.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database