{"title":"A new framework to characterize and unify the impact load exerted by flow-type mass movements","authors":"Dongri Song, Xiaoqing Chen","doi":"10.1007/s10346-024-02253-5","DOIUrl":null,"url":null,"abstract":"<p>A wide range of flow-type mass movements occur in nature. Depending on the solid fraction of these flows, they can be characterized as stream flows (flash floods), hyper-concentrated flows (debris floods), debris flows, and dry debris avalanches. A key scientific challenge in mitigating these hazards is estimating the impact force that they exert on protection structures. In this study, a new framework (<i>N</i><sub>fric</sub> - <i>Fr</i><sup>2</sup> - <span>\\(\\alpha\\)</span> relationship) is proposed to characterize and unify the impact behavior for a wide spectrum of flow-type mass movements. The friction number <i>N</i><sub>fric</sub> characterizes the ratio of grain-contact to fluid-viscous stresses for the wide range of flow types. Solid–fluid interaction regulates the pore fluid pressure, thereby governing the rheology of the flows and the degree of static loading exerted on a barrier. The Froude number <i>Fr</i><sup>2</sup> (in squared form) macroscopically characterizes the flow inertia relative to the earth’s gravitational field. Finally, the dynamic pressure coefficient <span>\\(\\alpha\\)</span> is used to quantify the impact force in a dimensionless manner. As compared to existing guidelines, which recommend a wide range of <span>\\(\\alpha\\)</span> without considering the flow composition, the newly proposed framework in this study estimates the dynamic impact force by considering the effects of solid–fluid interaction. Findings from this study could further enhance the design of flow-type mass movement mitigation structures.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"105 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02253-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A wide range of flow-type mass movements occur in nature. Depending on the solid fraction of these flows, they can be characterized as stream flows (flash floods), hyper-concentrated flows (debris floods), debris flows, and dry debris avalanches. A key scientific challenge in mitigating these hazards is estimating the impact force that they exert on protection structures. In this study, a new framework (Nfric - Fr2 - \(\alpha\) relationship) is proposed to characterize and unify the impact behavior for a wide spectrum of flow-type mass movements. The friction number Nfric characterizes the ratio of grain-contact to fluid-viscous stresses for the wide range of flow types. Solid–fluid interaction regulates the pore fluid pressure, thereby governing the rheology of the flows and the degree of static loading exerted on a barrier. The Froude number Fr2 (in squared form) macroscopically characterizes the flow inertia relative to the earth’s gravitational field. Finally, the dynamic pressure coefficient \(\alpha\) is used to quantify the impact force in a dimensionless manner. As compared to existing guidelines, which recommend a wide range of \(\alpha\) without considering the flow composition, the newly proposed framework in this study estimates the dynamic impact force by considering the effects of solid–fluid interaction. Findings from this study could further enhance the design of flow-type mass movement mitigation structures.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database